Explanation:
Option first is the correct one
Yes the following statements about her trout is likely true Because the ponds are different and the populations are likely to experience different mutations, the populations will likely diverge evolutionarily, but only over many generations.
Explanation:
The effect of genetic drift can be seen in all populations but the most is seen in small population. The change in allele frequency due to the sampling error would lead to evolution of the species.
Bottleneck effect is when a population gets reduced due to some natural disaster. Her friends were not right about bottleneck effect.
So it is clear that no bottleneck effect will occur as each pond have different chance or rate of mutation and the change in alleles will be different. The trouts will evolve independently in the different ponds and pass on the traits to their progeny.
Genetic drift does not take into account for the harm or benefit of the alleles that are passed on.
Answer:
it will dissolve
Explanation:
<em>CARRY </em><em>ON </em><em>LEARNING</em>
Answer:
A series of nonpolar amino acids would most likely be located in the interior region of the tridimensional molecule.
Explanation:
Proteins are formed by linearly arranged amino acids, each with a side chain: the R-group.
Of the 20 different amino acids that compose the proteins, about half of them -10- are non-polar. Their R-groups are not stable if they are in contact with water, meaning that non-polar amino acids are hydrophobic.
When proteins are synthesized, they acquire a three-dimensional structure that makes them more stable. Lineal polypeptides get folded and turn into a shape that makes them more stable in the environment and capable of accomplishing their biological role. When they are in an aqueous media, their bent shape leaves the hydrophilic R-groups in contact with water. The hydrophilic R-groups stick in the center of the polypeptide, facing the protein interior, and avoiding interaction with water.