Answer:
f(x) = 3 cos (2Pi / period value ; x )+ 2
or see answer using 2 as the period see answer in bold below.
Step-by-step explanation:
cosine function amplitude of 3 is A = 3
The period is used to find B
You need to show period value as the denominator and work out from there with 2PI as a function numerator to show as 2pi / period can be a data angle
C is the adding value.
Acos (Bx) + C
A = 3
Bx = 2 pi / period
C = + 2
However f 2 is also the period found
then we just plug in 2 to above formula
f(x) = 3 cos (2Pi / 2 ; x )+ 2
f(x) = 3cos (x pi) + 2
I wonder if you mean to write
in place of
...
If you meant what you wrote, then we have


If you meant to write
(the cube root of 256), then we could go on to have
![\sqrt[3]{256}=\sqrt[3]{16^2}=\sqrt[3]{(4^2)^2}=\sqrt[3]{4^4}=\sqrt[3]{4^3\cdot4}=4\sqrt[3]4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%7D%3D%5Csqrt%5B3%5D%7B16%5E2%7D%3D%5Csqrt%5B3%5D%7B%284%5E2%29%5E2%7D%3D%5Csqrt%5B3%5D%7B4%5E4%7D%3D%5Csqrt%5B3%5D%7B4%5E3%5Ccdot4%7D%3D4%5Csqrt%5B3%5D4)
<h3>Corresponding angles =
angle 1 and angle 5</h3>
They are on the same side of the transversal cut (both to the left of the transversal) and they are both above the two black lines. It might help to make those two black lines to be parallel, though this is optional.
Other pairs of corresponding angles could be:
- angle 2 and angle 6
- angle 3 and angle 7
- angle 4 and angle 8
=======================================================
<h3>Alternate interior angles = angle 3 and angle 5</h3>
They are between the black lines, so they are interior angles. They are on alternate sides of the blue transversal, making them alternate interior angles.
The other pair of alternate interior angles is angle 4 and angle 6.
=======================================================
<h3>Alternate exterior angles = angle 1 and angle 7</h3>
Similar to alternate interior angles, but now we're outside the black lines. The other pair of alternate exterior angles is angle 2 and angle 8
=======================================================
<h3>Same-side interior angles = angle 3 and angle 6</h3>
The other pair of same-side interior angles is angle 4 and angle 5. They are interior angles, and they are on the same side of the transversal.
I would say -26 because -22, -24, -26=-72
Answer:
The z-score for SAT exam of junior is much small than his ACT score. This means he performed well in his ACT exam and performed poor in his SAT exam.
Step-by-step explanation:
Mean SAT scores = 1026
Standard Deviation = 209
Mean ACT score = 20.8
Standard Deviation = 4.8
We are given SAT and ACT scores of a student and we have to compare them. We cannot compare them directly so we have to Normalize them i.e. convert them into such a form that we can compare the numbers in a meaningful manner. The best way out is to convert both the values into their equivalent z-scores and then do the comparison. Comparison of equivalent z-scores will tell us which score is higher and which is lower.
The formula to calculate the z-score is:

Here, μ is the mean and σ is the standard deviation. x is the value we want to convert to z score.
z-score for junior scoring 860 in SAT exam will be:

z-score for junior scoring 16 in ACT exam will be:

The z-score for SAT exam of junior is much small than his ACT score. This means he performed well in his ACT exam and performed poor in his SAT exam.