Answer:
20,000 genes...
Explanation:
<h3><em>Human genes vary in size from a few hundred bases to over a million bases..So every human has 20,000 genes and 3,000,000,000 bases.Your entire sequence of genes and bases is called
genome..</em></h3>
Answer:
plants grow best in sandy loam
Explanation:
there are three main types of soil : sand , silt , and clay. the best soil for most plants to ensure optimum growth is a rich , sandy loam. this soil is an even mixture of all three main types of soil.
Answer:
If there is homologous chromosomes (metaphase I) or duplicated chromosomes/sister chromatids (metaphase II) in the middle of the cell.
Explanation:
Meiosis involves two series of nuclear divisions grouped into meiosis I and meiosis II. Each division has the same number of stages i.e prophase, metaphase, anaphase, telophase etc. Meiosis I involves the separation of homologous chromosomes i.e similar but non-identical chromosomes from each parent.
On the other hand, meiosis II involves the separation of sister chromatids (duplicated chromosome). Since METAPHASE is generally characterized by the alignment of chromosome at the middle of the cell for separation in the anaphase stage, it means that the difference between metaphase in meiosis I and II will be whether it is homologous chromosomes that are in the middle or sister chromatids.
Therefore, according to this question, I would know if the cartoon is in metaphase I or II if:
- there are homologous chromosomes in the middle of the cell (metaphase I)
- there are sister chromatids in the middle of the cell (metaphase II).
Answer: Eating excessive quantities of such molecules could deregulate this process, increasing methylation and repressing the expression of genes that should normally be expressed.
Explanation:
DNA methylation is one of the epigenetic mechanisms involved in the regulation of gene expression, because it is a process by which methyl groups are added to DNA.
Methylation then modifies the function of DNA when it is found in the promoter gene, it is essential for normal development and is associated with a number of key processes, including genomic imprinting, inactivation of the X chromosome, repression of repeating elements, aging, and carcinogenesis. Usually, <u>it acts to suppress gene transcription.</u>
For example, folic acid is essential for the rapid cell division that occurs during early fetal development and it also plays an important role in methylation and thus in gene regulation. <u>The metabolism of these vitamins is aimed at achieving adequate levels of DNA methylation, necessary for the cellular processes</u>. Eating excessive quantities of such molecules could deregulate this process, <u>increasing methylation and repressing the expression of genes that should normally be expressed</u>.