1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
9

The expression x - 2 is a factor of p(x) = x 5 - 4x 3 + 2x 2 - 4x + 1. true or false

Mathematics
1 answer:
Sonja [21]3 years ago
5 0
The answer is false.
You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
The value of the exponent in (22)−5<br><br>is​
lyudmila [28]

Answer:

Let's calculate:

22-5

• Remove minus in the exponent and invert the base:

= (1/22)5

• Expand the multiplication:

= (1/22) * (1/22) * (1/22) * (1/22) * (1/22)

• Find your result:

= 1/5153632 ≈ 0.000000194038

3 0
3 years ago
Which type of deposit is paid in advance to protect landlords against nonpayment?
Fofino [41]
It's security deposit:)
4 0
3 years ago
Read 2 more answers
the 7th grade teachers want to buy the principal a giant stuffed tiger for his office cost of $50 however the store is having a
melomori [17]
So with the 10% discount, thats 45$, adding tax, that's <span>$47.70.</span>
3 0
4 years ago
Can anyone answer -6x-6(x+3)+10 and show the work please.
Archy [21]
The answer is -12x-8
6 0
3 years ago
Other questions:
  • Help with math plz help
    8·1 answer
  • Which algebraic expression is equivalent to the expression below?
    5·2 answers
  • A student will be taking a quiz he is underprepared for and will guess every answer. The quiz consists of 10 true/false question
    15·1 answer
  • if 1/4 of a gallon of paint is needed to paint 2/3 of a fence, how many gallons are needed to paint the entire fence? site:socra
    11·2 answers
  • Day 1 Michael ran 5 miles day 2 Michael ran 2 miles day 3 Michael ran 7 miles day 4 Michael ran 3 miles how many more miles did
    11·1 answer
  • Help please, help me out
    11·1 answer
  • Some people took part in a game. The frequency shows information about their scores.
    11·1 answer
  • The price of a product is increased by 30% and then again by 10%. How many per cent did the price increase altogether?​
    8·1 answer
  • A turtle is on a rock that is 1.1 feet above sea level. The turtle dives under water. The turtle's total change in altitude duri
    7·1 answer
  • How many eighths do you shade to equal 1 half?<br><br> 3<br><br> 4<br><br> 1<br><br> 2
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!