1) 0.095
2)0.1875
3)0.3
4)0.21875
5)0.133
6)0.66
7) 0.6
8)0.375
If a candy bar is cut into 8 pieces what is the ratio of the first 3 pieces to the rest of the pieces.
Answer: 3:8
Maybe hope it helps lol:)
In the question, the given expression is

And we have to find the equivalent expression to the given expression .
First we remove the parenthesis

Now we combine the like terms, and here like terms are z and z, therefore on combining , we will get

And that's the required equivalent expression .
Answer:
The volume of the region V = 2
Step-by-step explanation:
Given that:
;
where initially;

The volume of the region is given by a triple which is expressed as:



![V = \int \limits ^{1}_{0} \int \limits ^{ 1}_{-1} \Bigg [z \Bigg]^{3y^2}_{0} \ dy \ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%20%5Climits%20%5E%7B1%7D_%7B0%7D%20%20%5Cint%20%5Climits%20%20%5E%7B%201%7D_%7B-1%7D%20%20%20%5CBigg%20%5Bz%20%5CBigg%5D%5E%7B3y%5E2%7D_%7B0%7D%20%5C%20dy%20%5C%20dx)
![V = \int \limits ^{1}_{0} \int \limits ^{ 1}_{-1} \Bigg [3y^2 \Bigg] \ dy \ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%20%5Climits%20%5E%7B1%7D_%7B0%7D%20%20%5Cint%20%5Climits%20%20%5E%7B%201%7D_%7B-1%7D%20%20%20%5CBigg%20%5B3y%5E2%20%5CBigg%5D%20%20%5C%20dy%20%5C%20dx)
![V = \int \limits ^{1}_{0} \Bigg [\dfrac{3y^3}{3} \Bigg]^1_{-1} \ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%20%5Climits%20%5E%7B1%7D_%7B0%7D%20%20%20%5CBigg%20%5B%5Cdfrac%7B3y%5E3%7D%7B3%7D%20%5CBigg%5D%5E1_%7B-1%7D%20%20%20%5C%20dx)
![V = \int \limits ^{1}_{0} \Bigg [\dfrac{3(1)^3}{3}- \dfrac{3(-1)^3}{3} \Bigg] \ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%20%5Climits%20%5E%7B1%7D_%7B0%7D%20%20%20%5CBigg%20%5B%5Cdfrac%7B3%281%29%5E3%7D%7B3%7D-%20%5Cdfrac%7B3%28-1%29%5E3%7D%7B3%7D%20%5CBigg%5D%20%20%20%5C%20dx)
![V = \int \limits ^{1}_{0} \Bigg [1-(-1)\Bigg] \ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%20%5Climits%20%5E%7B1%7D_%7B0%7D%20%20%20%5CBigg%20%5B1-%28-1%29%5CBigg%5D%20%20%20%5C%20dx)
![V =2 \Bigg [x \Bigg] ^1_0](https://tex.z-dn.net/?f=V%20%3D2%20%20%5CBigg%20%5Bx%20%5CBigg%5D%20%5E1_0)
V = 2
Thus, the volume of the region is 2