Construct the perpendicular bisector of one side of triangle
Construct the perpendicular bisector of another side
Where they cross is the center of the Circumscribed circle
Place compass on the center point, adjust its length to reach any corner of the triangle, and draw your Circumscribed circle!
Minimum is 40
First quartile is 43
Median is 61
Third quartile is 65
Maximum is 97
Answer:
m<N = 76°
Step-by-step explanation:
Given:
∆JKL and ∆MNL are isosceles ∆ (isosceles ∆ has 2 equal sides).
m<J = 64° (given)
Required:
m<N
SOLUTION:
m<K = m<J (base angles of an isosceles ∆ are equal)
m<K = 64° (Substitution)
m<K + m<J + m<JLK = 180° (sum of ∆)
64° + 64° + m<JLK = 180° (substitution)
128° + m<JLK = 180°
subtract 128 from each side
m<JLK = 180° - 128°
m<JLK = 52°
In isosceles ∆MNL, m<MLN and <M are base angles of the ∆. Therefore, they are of equal measure.
Thus:
m<MLN = m<JKL (vertical angles are congruent)
m<MLN = 52°
m<M = m<MLN (base angles of isosceles ∆MNL)
m<M = 52° (substitution)
m<N + m<M° + m<MLN = 180° (Sum of ∆)
m<N + 52° + 52° = 180° (Substitution)
m<N + 104° = 180°
subtract 104 from each side
m<N = 180° - 104°
m<N = 76°
Answer:
x=1±√47
Step-by-step explanation:
it's up above.
Answer:
it would be 1/6 2
Step-by-step explanation:
the reason is because when you multiply 1/6 by 1/6 you get 1/36