1/6 plus 1/18, which equals to 2/9. Suppose we roll 4 on the first roll (the probability of rolling 4 is 1/12). On each successive roll the probability of rolling 7 is 1/6 and the probability of rolling 4 is 1/12.
[i.dk how this can help but if you got a 7 or 11 rolling on the first round you would probably win]
That question is accompanied by these answer choices:
<span>A. The scale is accurate but not precise.
B. The scale is precise but not accurate.
C. The scale is neither precise nor accurate.
D. The scale is both accurate and precise.
Then you need to distinguish between accuracy and precision.
Accuracy refers to the closeness of the measure to the real value, while precision, in this case, refers to the level of significant figures that the sacle report.
The fact that the scale reports the number with 4 significant figures means that it is very precise, but the fact that the result is not so close to the real value as the number of significan figures pretend to be, means that the scale is not accurate.
So, the answer is that the scale is precise but not accurate (the option B</span>
I think it would be 324 divided by 4 = 81 in.
Answer:
f(x) = -2|x| + 1
Step-by-step explanation:
The graph shifts one unit up the y axis since there's a value outside the absolute value which directly adds 1 to it.