Answer:
The correct answer is D. -2,592, -15,552, -93,312
Step-by-step explanation:
Each of the terms is the previous term multiplied by 6. You can find this by taking any term and dividing it by the one before it. The answer will always be 6.
-72/-12 = 6
-12/-2 = 6
So, in order to find the next 3, we take the last term and multiply it by 6.
-432 * 6 = -2,592
-2,592 * 6 = -15,552
-15,552 * 6 = -93,312
Answer:
0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.
Step-by-step explanation:
A distribution is called uniform if each outcome has the same probability of happening.
The uniform distributon has two bounds, a and b, and the probability of finding a value between c and d is given by:

The lengths of a professor's classes has a continuous uniform distribution between 50.0 min and 52.0 min.
This means that 
If one such class is randomly selected, find the probability that the class length is between 51.5 and 51.7 min.

0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.
Answer:A
Step-by-step explanation:
Answer:
The larger number is -6, the smaller number is -15
Step-by-step explanation:
We have two numbers, a and b.
We know that one number is larger than another by 9.
Then we can write:
a = b + 9
then a is larger than b by 9 units.
If the greater number is increased by 10 (a + 10) and the lesser number is tripled (3*b), the sum of the two would be -41:
(a + 10) + 3*b = -41
So we got two equations:
a = b + 9
(a + 10) + 3*b = -41
This is a system of equations.
One way to solve this is first isolate one variable in one of the two equations:
But we can see that the variable "a" is already isolated in the first equation, so we have:
a = b + 9
now we can replace that in the other equation:
(a + 10) + 3*b = -41
(b + 9) + 10 + 3*b = -41
now we can solve this for b.
9 + b + 10 + 3b = -41
(9 + 10) + (3b + b) = -41
19 + 4b = -41
4b = -41 -19 = -60
b = -60/4 = -15
b = -15
then:
a = b + 9
a = -15 + 9 = -6
a = -6
Y=1000*1.03^x is the correct compound recursive formula!