A reason why early living organisms on Earth could not have survived on the surface was because the lack of an ozone layer. The answer is number 1.
Hope this helps :)
The correct response is,
the sequences within the promoter region at -10 and -35 are the most important for recognition by the sigma subunit.
Promoter region is the DNA sequence located upstream of the corresponding gene. Promoters for genes are essential as RNA polymerase recognizes the promoter region and binds to it forming the holoenzyme complex which can inititate transcription of the gene located downstream.
Sigma factor is the transcription factor found in bacteria, RNA polymerase has a subunit for the sigma factor, this factor only can recognise the sequences in the promoter region and bind to it thus initiating transcription.
Promoters usually have 2 parts of conserved regions, -10 element and -35 elements. Both these regions have conserved sequences.
The sigma factor is capable of identifying these conserved sequences at these particular locations of the promoter and can bind to these sequences.
once the sigma factor binds to these regions, RNA polymerase too binds and forms a transcription initiation complex and then transcription of the downstream gene is initiated.
Therefore promoters need not have identical sequences for the sigma factor to bind, as long as the -10 and -35 regions have conserved sequences the sigma factor can bind and transcription initiation will be followed.
The answer would be Option D: more bone
Answer:The placement of fossils throughout the sruface layers of earth
Explanation:
Answer and Explanation:
The manipulation of the gene is called genetic engineering. In genetic engineering, fragments of genes are cloned by leading the genes into the host cell. The advantage of using a prokaryotic host system in genetic engineering is that bacterial cells are used to produce commercially significant products. For example, human growth hormone helps to treat dwarfism, and human insulin production, which is used to treat diabetes. The bacterium P.putida is created by genetic engineering, which is used to break down petroleum products. Genetic engineering also carries some potential risks, such as transferring the selected gene into another speice, benefit one species can harm another speice. Therefore genetic engineering must be used in limit in prokaryotes. These limitations are also addressable in single-cell eukaryotic systems. Biologics-based therapeutic medicines such as a vaccine, gene therapies, and cell therapies known as bioproduction are produced. Medicines are so complex that they can only be formed in a living system. Biopharmaceuticals, value-added food, fuels, chemicals, antibiotics, and many other products are produced by bioproduction.