The "Spanish" influenza pandemic of 1918–1919, which caused ≈50 million deaths worldwide, remains an ominous warning to public health. Many questions about its origins, its unusual epidemiologic features, and the basis of its pathogenicity remain unanswered. The public health implications of the pandemic therefore remain in doubt even as we now grapple with the feared emergence of a pandemic caused by H5N1 or other virus. However, new information about the 1918 virus is emerging, for example, sequencing of the entire genome from archival autopsy tissues. But, the viral genome alone is unlikely to provide answers to some critical questions. Understanding the 1918 pandemic and its implications for future pandemics requires careful experimentation and in-depth historical analysis.
Answer:
a) 28 cases
b) 3 cases
Explanation:
a) From the table of genetic codes, there are 28 codons that specify more than one amino acid assuming only the first two nucleotides are considered. In these cases, one cannot outrightly specify the amino acid the genetic codes are coding for without knowing the last nucleotide of the codes. <em>For example, UU can be for Phenylalanine or Leucine, CA can be for Histidine or Glutamine, etc. </em>
b) From the table of genetic codes, the first two nucleotides of Arginine can be either of CG or AG, that of Serine can be either of UC or AG while that Leucine can be either of CU or UU. Only in these <u>3 cases</u> would one fail to know which are the first two nucleotides assuming the name of the amino acids are given.
<em>See the attached image for the genetic code.</em>
D because they are complete systems
Answer:
<u>D) the nucleic acid (either DNA or RNA)</u>
<u />
Explanation:
Phages, or bacteriophages are viruses that infect bacteria.They have varying shapes, and sizes, and may contain one of two kinds of nucleic acid; these are RNA and DNA.
The nucleic acids are made up of nucleotides. These are genetic storage biomolecules made up of the monomers ribonucleic acid (RNA) deoxyribonucleic acid (DNA).
Answer:
The process of photosynthesis is energy-storing because the process converts light energy into chemical energy, which is stored in the bonds of glucose.