Answer:
B.) 18
Step-by-step explanation:
To find the correct b value we use this formula
b² - 4ac = 0
b = What we are solving for
a = 1
c = 81
b² - 4(1)(81) = 0
b² - 324 = 0
b² = 324

b = ±18
And 18 is one of the answer choices
So B.) 18 is the correct answer.
Answer:
The expected monetary value of a single roll is $1.17.
Step-by-step explanation:
The sample space of rolling a die is:
S = {1, 2, 3, 4, 5 and 6}
The probability of rolling any of the six numbers is same, i.e.
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 
The expected pay for rolling the numbers are as follows:
E (X = 1) = $3
E (X = 2) = $0
E (X = 3) = $0
E (X = 4) = $0
E (X = 5) = $0
E (X = 6) = $4
The expected value of an experiment is:

Compute the expected monetary value of a single roll as follows:
![E(X)=\sum x\cdot P(X=x)\\=[E(X=1)\times \frac{1}{6}]+[E(X=2)\times \frac{1}{6}]+[E(X=3)\times \frac{1}{6}]\\+[E(X=4)\times \frac{1}{6}]+[E(X=5)\times \frac{1}{6}]+[E(X=6)\times \frac{1}{6}]\\=[3\times \frac{1}{6}]+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]\\+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]+[4\times \frac{1}{6}]\\=1.17](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum%20x%5Ccdot%20P%28X%3Dx%29%5C%5C%3D%5BE%28X%3D1%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D2%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D3%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5BE%28X%3D4%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D5%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D6%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D%5B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B4%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D1.17)
Thus, the expected monetary value of a single roll is $1.17.
Answer:
Frosts second mile and steadys 6th mike
Step-by-step explanation:
<span>x^2 + 15x + 56.25 = 105.25
"Completing the square" is one of many different techniques for solving a quadratic equation. What you do is add a constant to both sides of the equation such that the lefthand side can be factored into the form a(x+d)^2. For instance, squaring (X+D) = X^2 + 2DX + D^2. Notice the 2DX term. That is the same term as the 15x term in the problem. So 2D = 15, D = 7.5. And D^2 = 7.5^2 = 56.25.
So we have
x^2 + 15x + 56.25 = 49 + 56.25
Which is
x^2 + 15x + 56.25 = 105.25
Which is the answer desired.
Now the rest of this is going beyond the answer. Namely, it's answering the question "Why does complementing the square help?"
Well, we know that the left hand side of the equation can now be written as
(x+7.5)^2 = 105.25
Now take the square root of each side
(x+7.5) = sqrt(105.25)
And let's use both the positive and negative square roots.
So
x+7.5 = 10.25914226
and
x+7.5 = -10.25914226
And let's find X.
x+7.5 = 10.25914226
x = 2.759142264
x+7.5 = -10.25914226
x = -17.75914226
So the roots for x^2 + 15x - 49 is 2.759142264, and -17.75914226</span>
R u serious,
y=1/2x
graph at (0,0), and (10, 5)
clearly
ez.