Using the binomial distribution, it is found that there is a 0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
With 5 shoots, the probability of making at least one is
, hence the probability of making none, P(X = 0), is
, hence:

![\sqrt[5]{(1 - p)^5} = \sqrt[5]{\frac{232}{243}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%281%20-%20p%29%5E5%7D%20%3D%20%5Csqrt%5B5%5D%7B%5Cfrac%7B232%7D%7B243%7D%7D)
1 - p = 0.9908
p = 0.0092
Then, with 6 shoots, the parameters are:
n = 6, p = 0.0092.
The probability that at least two of them make it inside the recycling bin is:

In which:
[P(X < 2) = P(X = 0) + P(X = 1)
Then:



Then:
P(X < 2) = P(X = 0) + P(X = 1) = 0.9461 + 0.0527 = 0.9988

0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
Answer: 
This is the same as writing (n-m)/n
Don't forget about the parenthesis if you go with the second option.
==================================================
Explanation:
The probability that she wins is m/n, where m,n are placeholders for positive whole numbers.
For instance, m = 2 and n = 5 leads to m/n = 2/5. This would mean that out of n = 5 chances, she wins m = 2 times.
The probability of her not winning is 1 - (m/n). We subtract the probability of winning from 1 to get the probability of losing.
We could leave the answer like this, but your teacher says that the answer must be "in the form of a combined single fraction".
Doing a bit of algebra would have these steps

and now the expression is one single fraction.
Answer:
1
Step-by-step explanation:
Answer:

Step-by-step explanation:
y-intercept is when x = 0, so (0, 2)
x-intercept is when y = 0, so (4, 0)

Slope-intercept form of linear equation: 
(where m is the slope and b is the y-intercept)
Given:

- b = 2
