<span>tan(15) =
sin(15) / cos(15) =
sin(45 - 30) / cos(45 - 30) =
[ sin(45)cos(30) - sin(30)cos(45) ] / [ cos(45)cos(30) + sin(45)sin(30)]
Since sin(45) = cos(45) = √2/2, you can just factor that out from the top and bottom
[ cos(30) - sin(30) ] / [ cos(30) + sin(30)]
[ √3/2 - 1/2 ] / [ √3/2 + 1/2]
(√3 - 1) / (√3 + 1)
(√3 - 1)^2 / (√3+1)(√3 - 1)
(√3 - 1)^2 / (3 - 1)
(3 - 2√3 +1) / 2
2 - √3
There's also a formula for tan(a-b), but I couldn't remember it off hand.</span>
The easiest way to find the vertex is to convert this standard form equation into vertex form, which is y = a(x - h)^2 + k.
Firstly, put x^2 - 10x into parentheses: y = (x^2 - 10x) + 30
Next, we want to make what's inside the parentheses a perfect square. To do that, we need to divide the x coefficient by 2 and square it. In this case, the result is 25. Add 25 inside the parentheses and subtract 25 outside of the parentheses: y = (x^2 - 10x + 25) + 30 - 25
Next, factor what's inside the parentheses and combine like terms outside of the parentheses, and your vertex form is: y = (x - 5)^2 + 5.
Now going back to the formula of the vertex form, y = a(x - h)^2 + k, the vertex is (h,k). Using our vertex equation, we can see that the vertex is (5,5).
Answer:
g + 15 = 40
or
40 - 15 = g
Step-by-step explanation:
Answer:
V= 1268.2
Step-by-step explanation: