Answer:
Step-by-step explanation:
so what you need to do is subtracked 26 with 46 then you get the ansewer 20 but after that you have to do 20 divided by 4 and you will get your answer.
Answer:
see explanation
Step-by-step explanation:
Under a reflection in the x- axis
a point (x, y ) → (x, - y ) , then
A (- 1, - 5 ) → A' (- 1, 5 )
B (2, - 3 ) → B' (2, 3 )
C (3, - 5 ) → C' (3, 5 )
Under a reflection in the y- axis
a point (x, y ) → (- x, y ) , then
A' (- 1, 5 ) → A'' (1, 5 )
B' (2, 3 ) → B'' (- 2, 3 )
C' (3, 5 ) → C'' ( - 3, 5 )
Translate down and reflect over a vertical line! :)
it means bring the cup down and then flip
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Answer:
A=2(wl+hl+hw)=2·(8·12+4·12+4·8)=352
Step-by-step explanation:
brainliest?