Answer:
Weights of at least 340.1 are in the highest 20%.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

a. Highest 20 percent
At least X
100-20 = 80
So X is the 80th percentile, which is X when Z has a pvalue of 0.8. So X when Z = 0.842.




Weights of at least 340.1 are in the highest 20%.
Answer:
7/11
Step-by-step explanation:
Answer:
30.23944
Step-by-step explanation:
In order to reduce ANY fraction to lowest terms, find any common factors
of the numerator and denominator, and divide them both by it. If they still
have a common factor, then divide them by it again. Eventually, they won't
have any common factor except ' 1 ', and then you'll know that the fraction is
in lowest terms.
Do 15 and 40 have any common factors ?
Let's see . . .
The factors of 15 are 1, 3, <em>5</em>, and 15 .
The factors of 40 are 1, 2, 4,<em> 5</em>, 8, 10, 20, and 40 .
Ah hah ! Do you see that ' <em>5</em> ' on both lists ? That's a common factor.
So 15/40 is NOT in lowest terms.
Divide the numerator and denominator both by 5 :
15 / 40 =<em> 3 / 8</em>
3 and 8 don't have any common factor except ' 1 '.
So 3/8 is the same number as 15/40, but in lowest terms.