Is that a with 4 vertices ,,,check your question
Polygons are similar? Well there is no picture provided, so I have no idea what you're talking about. But I think you might be asking if in general all polygons are similar, and if that's the case, they are not. Similar means they are similar in at least one aspect, and all polygons are different from each other, only adding one line for each bigger polygon. So I don't know if this helped you, but I tried anyways.
Answer:
C) ½
Step-by-step explanation:
P(C and D) = 150/300
= ½
For it to be non-linear, the rate of change cannot be constant. For the first table the rate is a constant 1 and the second table has a constant rate of -1. The 3rd and 4th tables have no constant rate and thus are non-linear.
The 4th table is increasing while the 3rd table is decreasing.
So the 3rd table, Set C, is the only non-linear negative association between x and y.
Answer:
a) 7.79%
b) 67.03%
c) Cumulative Distribution Function

Step-by-step explanation:
We are given the following in the question:

where x is the duration of a call, in minutes.
a) P( calls last between 2 and 3 minutes)
![=\displaystyle\int^3_2 p(x)~ dx\\\\= \displaystyle\int^3_20.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^3_2\\\\=-\Big[e^{-0.3}-e^{-0.2}\Big]\\\\= 0.0779\\=7.79\%](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5E3_2%20p%28x%29~%20dx%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E3_20.1e%5E%7B-0.1x%7D~dx%5C%5C%5C%5C%3D%5CBig%5B-e%5E%7B-0.1x%7D%5CBig%5D%5E3_2%5C%5C%5C%5C%3D-%5CBig%5Be%5E%7B-0.3%7D-e%5E%7B-0.2%7D%5CBig%5D%5C%5C%5C%5C%3D%200.0779%5C%5C%3D7.79%5C%25)
b) P(calls last 4 minutes or more)
![=\displaystyle\int^{\infty}_4 p(x)~ dx\\\\= \displaystyle\int^{\infty}_40.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^{\infty}_4\\\\=-\Big[e^{\infty}-e^{-0.4}\Big]\\\\=-(0- 0.6703)\\= 0.6703\\=67.03\%](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_4%20p%28x%29~%20dx%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_40.1e%5E%7B-0.1x%7D~dx%5C%5C%5C%5C%3D%5CBig%5B-e%5E%7B-0.1x%7D%5CBig%5D%5E%7B%5Cinfty%7D_4%5C%5C%5C%5C%3D-%5CBig%5Be%5E%7B%5Cinfty%7D-e%5E%7B-0.4%7D%5CBig%5D%5C%5C%5C%5C%3D-%280-%090.6703%29%5C%5C%3D%200.6703%5C%5C%3D67.03%5C%25)
c) cumulative distribution function
