1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr_godi [17]
3 years ago
10

Find two consecutive odd integers such that their product is 59 more than 2 times their sum

Mathematics
1 answer:
svetlana [45]3 years ago
8 0
Let n and n+2 be the integers. Then:
n(n+2)-59=2(n+n+2)
n²+2n-59-4n-4=0
n²-2n-63=0
(n-9)(n+7)=0
n=9 or -7
n+2=11 or -5


You might be interested in
Dada la sucesión an = 1700 + 4,1· n2 + 304,9· n
shutvik [7]

Concluimos que la opción correcta es <em>"Solo II"</em>.

Una expresión es una sucesión aritmética si y solo si existe entre dos elementos <em>consecutivos</em> cualesquiera de la serie la misma diferencia. La sucesión aritmética es definida por una expresión de la forma:

a_{n} = a + b\cdot n, n\in \mathbb{N} (1)

Donde a,b son coeficientes de la sucesión.

Asimismo, una expresión es una sucesión geométrica si y solo si entre dos elementos <em>consecutivos</em> cualesquiera de la serie existe la misma razón. La sucesión geométrica es definida por una expresión de la forma:

a_{n} = a\cdot r^{b\cdot n}, n\in \mathbb{N} (2)

Donde a, b, r son coeficientes de la sucesión.

Por último, una expresión es una sucesión monótona creciente si dados dos elementos <em>consecutivos</em> de una serie, el elemento posterior es siempre mayor que el elemento anterior. Matemáticamente, debe satisfacerse la siguiente condición:

\frac{a_{n+1}}{a_{n}} > 1, n\in \mathbb{N} (3)

Esta claro por inspección directa que la sucesión dada no es aritmética ni geométrica y cabe comprobar si es monótona creciente. Valiéndonos de (3), realizamos las operaciones algebraicas pertinentes:

r = \frac{1700 + 4,1\cdot (n+1)^{2}+304,9\cdot (n+1)}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot (n^{2}+2\cdot n +1) +304,9\cdot (n+1)}{1700 + 4.1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot n^{2}+304,9\cdot n+4,1\dot (2\cdot n +1) +304.9}{1700+4,1\cdot n^{2}+304,9\cdot n}

r = 1 + \frac{8,2\cdot n +309}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

Como puede apreciarse, r > 1. Por tanto, la sucesión es monótona y creciente.

En consecuencia, concluimos que la opción correcta es <em>"Solo II"</em>.

Invitamos cordialmente a leer esta pregunta sobre sucesiones: brainly.com/question/21709418

4 0
3 years ago
The question is in the picture (Alegbra 1)
olchik [2.2K]

Answer:

\frac{s}{s + 3}

6 0
3 years ago
Question 2
Helen [10]

Answer:

The square root of 60

7 0
3 years ago
Read 2 more answers
Which expression is equivalent to 5 to the power3
11111nata11111 [884]

Answer:

What are the given expressions??

Step-by-step explanation:

Since I can't see you're options, I'll just give you an answer that'll hopefully help...

5³ = 125

Hope that helps you!!  :)

4 0
3 years ago
Read 2 more answers
HELLO!! I NEED HELP! Please show full Solutions. I will mark brainliest for the best answer. Thank you and god bless.
Greeley [361]
((x+2)(x+2))-((x-5)(1))=A

x^2+4x+4-x+5=A

x^2+3x+9=A
8 0
3 years ago
Other questions:
  • The point (4,3) is reflected across the y-axis. In what quadrant will the new coordinate be? helppppppppp!!!!!
    6·2 answers
  • The markup of an MP3 player is $207.20. The markup rate is 60%. What is the cost?
    12·1 answer
  • Solve for x 5x+5x+3=4(2x+1)-2
    9·1 answer
  • Hello can someone help me
    8·2 answers
  • It has been estimated that one million people are added to the world's population every 4.5 days. Use this rate to answer the fo
    9·1 answer
  • Explain how to find 45% of a number
    12·1 answer
  • Find the remainder when 1! + 2! + 3! + ..... + 100! is divided by 24 .
    9·1 answer
  • NEED HALP ASAP WILL GIVE BRAINLY
    12·1 answer
  • The ratio of boys to girls in a class is 5:3. There are 32 students
    13·1 answer
  • BRAINLIEST! Fastest and correct! (put the time you answered in your answer)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!