1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
4 years ago
8

What I'd the square root of 81

Mathematics
2 answers:
Ludmilka [50]4 years ago
5 0

the square root of 81 is 9

omeli [17]4 years ago
3 0
The square root of 81 is 9 since 9 multiplied by itself is 81 (using the power of two)
You might be interested in
What is the slope of the line that passes through the points (−10,−4) and (10, -29)?
OleMash [197]

Answer:

slope= - 5/4

Step-by-step explanation:

3 0
3 years ago
in a new clothing store, she charges 21.75 for each sweatshirt she sells. what was the revenue if she sold 51 sweatshirts last m
finlep [7]

Answer:


Step-by-step explanation:


6 0
3 years ago
Read 2 more answers
Ecuación de la hipérbola con centro en (0;0), focos en abrir paréntesis 0 coma espacio menos raíz cuadrada de 28 cerrar paréntes
yaroslaw [1]

Answer:

\frac{y^{2}}{25}-\frac{x^{2}}{3}=1

Step-by-step explanation:

Para resolver este problema debemos tomar en cuenta los datos que nos dan y la ecuación de una hipérbola. Comencemos con los datos:

centro: (0,0)

focos: (0,-\sqrt{28}),(0,\sqrt{28})

eje conjugado = 2\sqrt{3}

por los focos podemos ver que la hipérbola se dirige hacia el eje y, por lo que debemos tomar la siguiente forma de la ecuación de la parábola:

\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1

de los focos podemos obtener que:

c=\sqrt{28}

y del eje conjugado podemos saber que al dividir la longitud del eje conjugado dentro de 2 obtenemos b, así que:

b=\sqrt{3}

podemos utilizar la siguiente fórmula para obtener a:

c^{2}-a^{2}=b^{2}

si despejamos a en la ecuación obtenemos lo siguiente:

a=\sqrt{c^{2}-b^{2}}

ahora podemos sustituir los valores:

a=\sqrt{(\sqrt{28})^{2}-(\sqrt{3})^{2}}

a=\sqrt{28-3}

a=\sqrt{25}

a=5

así que media vez conozcamos a, podemos sustituir los datos en la ecuación de la hipérbola así que obtenemos lo siguiente:

\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1

\frac{y^{2}}{(5)^{2}}+\frac{x^{2}}{(\sqrt{3})^{2}}=1

\frac{y^{2}}{25}+\frac{x^{2}}{3}=1

si graficamos la hipérbola, queda como en el documento adjunto.

7 0
3 years ago
Proof that :<br><img src="https://tex.z-dn.net/?f=%20%7Bsin%7D%5E%7B2%7D%20%5Ctheta%20%2B%20%20%7Bcos%7D%5E%7B2%7D%20%5C%3A%5Cth
Arisa [49]

Answer:

Solution given:

Right angled triangle ABC is drawn where <C=\theta

we know that

\displaystyle Sin\theta=\frac{opposite}{hypotenuse} =\frac{AB}{AC}

\displaystyle Cos\theta=\frac{adjacent}{hypotenuse}=\frac{BC}{AC}

Now

left hand side

\displaystyle {sin}^{2} \theta + {cos}^{2} \:\theta

Substituting value

(\frac{AB}{AC})²+(\frac{BC}{AC})²

distributing power

\frac{AB²}{AC²}+\frac{BC²}{AC²}

Taking L.C.M

\displaystyle \frac{AB²+BC²}{AC²}....[I]

In ∆ABC By using Pythagoras law we get

\boxed{\green{\bold{Opposite²+adjacent²=hypotenuse²}}}

AB²+BC²=AC²

Substituting value of AB²+BC² in equation [I]

we get

\displaystyle \frac{AC²}{AC²}

=1

Right hand side

<h3><u>proved</u></h3>

8 0
3 years ago
Read 2 more answers
A biologist found a system of equations to help her calculate the growth of bacteria. The functions she found y=2x2−15y=2x2-15 &
Nesterboy [21]
Part A.
The set of equations can be solved by substitution. Use the expression one equation gives for y as the value of y in the other equation. This gives
  2x²-15 = 3x-6
Subtracting the right side gives a quadratic in standard form that can be solved by any of several methods.
  2x² -3x -9 = 0
  (2x+3)(x-3) = 0 . . . . factor the above equation
  x = -3/2, x = 3 . . . . .use the zero product rule to find x
Now, these x-values can be substituted into either equation for y. The linear equation is often easier to evaluate.
  y = 3(-3/2) -6 = -10.5
  y = 3(3)-6 = 3

The solutions to the system are (-1.5, -10.5) and (3, 3).


Part B.
The two equations can be graphed. The solutions are where the graphs intersect. The graphs intersect where the (x, y) values that satisfy one equation are the same (x, y) values that satisfy the other equation. Those points of intersection are (-1.5, -10.5) and (3, 3).

6 0
3 years ago
Other questions:
  • A company owns rental properties and must pay for repairs and upkeep. If the monthly maintenance costs have an average of $3500.
    12·2 answers
  • Simplify 6 plus the square root of negative 80.
    8·1 answer
  • Last Saturday 16 people worked at the theater. Four people worked the morning shift and 12 people worked the evening shift. They
    10·1 answer
  • 16 out of the 50 digital video recorders
    12·1 answer
  • A bowl contains 13 red and brown M&amp;Ms. There are 3 more red M&amp;Ms than brown. How many of each color in a bowl. I have to
    10·2 answers
  • What is the mode of this data set? {8, 11, 20, 10, 2, 17, 15, 5, 16, 15, 25, 6}
    14·2 answers
  • What is the area of the triangle?<br> 12<br> units2
    11·2 answers
  • HELPPPPPPPPPPPPPpppp
    10·1 answer
  • What is 1/3^3 as a fraction
    9·2 answers
  • Paid well, HELP I need someone with tangent knowledge...
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!