Answer:
The sum of the first 650 terms of the given arithmetic sequence is 2,322,775
Step-by-step explanation:
The first term here is 4
while the nth term would be ai = a(i-1) + 11
Kindly note that i and 1 are subscript of a
Mathematically, the sum of n terms of an arithmetic sequence can be calculated using the formula
Sn = n/2[2a + (n-1)d)
Here, our n is 650, a is 4, d is the difference between two successive terms which is 11.
Plugging these values, we have
Sn = (650/2) (2(4) + (650-1)11)
Sn = 325(8 + 7,139)
Sn = 325(7,147)
Sn = 2,322,775
Minimum is 40
First quartile is 43
Median is 61
Third quartile is 65
Maximum is 97
Answer:
i think its 2/3
Step-by-step explanation:
Answer:
353,60000
Step-by-step explanation:
- 3400,000 x 8%=272,00000
- 272,000000 x 13 years
- 353,600000
First bring all terms in 'a' to the left side of the formula by subtracting ac from both sides
ab - ac - cd = ac - ac
ab - ac - cd = 0
now add cd to both sides
ab - ac -cd + cd = cd
ab - ac = cd
now factor the left side by taking out the 'a'
a(b-c) = cd
now divide both sides by (b-c)
a = cd / (b-c)
done