Answer:
18%
Step-by-step explanation:
0.12 is 12 percent.
We also have the 0.06 percent which would just be 6 percent
We need to add up those percentages to get 18 percent, for the people surveyed that cannot swim would be 18 percent.
Our final answer is D.
3 cans!!!
5x6= 30 (divided by 2= 15)
5x6=30 (divided by 2 = 15)
10x18= 180
180+30= 210
3 cans!!
.
Answer:
This is known as Data dredging.
Step-by-step explanation:
In order for any statistical analysis to be significant, a researcher has to first generate a hypothesis.
Data dredging is trying to uncover patterns in data that can be presented statistically without devising a clear hypothesis by use data mining. It is also referred to as data fishing or p-hacking.
In this case any correlation (relationship between cause-effect)will be purely by chance.
Therefore, the investigator is Data dredging
Answer:
0.375
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given that:
The equation of the damped vibrating spring is y" + by' +2y = 0
(a) To convert this 2nd order equation to a system of two first-order equations;
let y₁ = y
y'₁ = y' = y₂
So;
y'₂ = y"₁ = -2y₁ -by₂
Thus; the system of the two first-order equation is:
y₁' = y₂
y₂' = -2y₁ - by₂
(b)
The eigenvalue of the system in terms of b is:




(c)
Suppose
, then λ₂ < 0 and λ₁ < 0. Thus, the node is stable at equilibrium.
(d)
From λ² + λb + 2 = 0
If b = 3; we get

Now, the eigenvector relating to λ = -1 be:
![v = \left[\begin{array}{ccc}+1&1\\-2&-2\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2B1%261%5C%5C-2%26-2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dv_1%5C%5Cv_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\sim v = \left[\begin{array}{ccc}1&1\\0&0\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Csim%20v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dv_1%5C%5Cv_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let v₂ = 1, v₁ = -1
![v = \left[\begin{array}{c}-1\\1\\\end{array}\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let Eigenvector relating to λ = -2 be:
![m = \left[\begin{array}{ccc}2&1\\-2&-1\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=m%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C-2%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dm_1%5C%5Cm_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\sim v = \left[\begin{array}{ccc}2&1\\0&0\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Csim%20v%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dm_1%5C%5Cm_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let m₂ = 1, m₁ = -1/2
![m = \left[\begin{array}{c}-1/2 \\1\\\end{array}\right]](https://tex.z-dn.net/?f=m%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%2F2%20%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
∴
![\left[\begin{array}{c}y_1\\y_2\\\end{array}\right]= C_1 e^{-t} \left[\begin{array}{c}-1\\1\\\end{array}\right] + C_2e^{-2t} \left[\begin{array}{c}-1/2\\1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dy_1%5C%5Cy_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%3D%20C_1%20e%5E%7B-t%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%20C_2e%5E%7B-2t%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%2F2%5C%5C1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
So as t → ∞