Answer: Alternation Ranking
Explanation: In Alternation Ranking employees are rated by choosing the best and then the worst employee, and then repeating the process until all employees have been rated. This method is effective in determining worker's performance using comparison with other workers in the company.
Answer:
MR = 10 – 1q1.
Explanation:
Demand function, P = 20 – 0.5Q
Q = q1 + q2
Now insert Q in the P = 20 – 0.5Q.
P = 20 – 0.5 (q1 + q2)
We have the value of q2 = 20.
P = 20 – 0.5 (q1 + q2)
P = 20 – 0.5 (q1 + 20)
P = 20 – 0.5q1 – 10
P = 10 – 0.5q1
Total revenue of firm 1, TR = Pq1
TR = 10q1 – (0.5q1)^2
Now MR is the differentiation of TR. So the MR after differentiation if TR of firm 1 is:
MR = 10 – 1q1
Answer: A positive externality, negative externality and asymmetric information
Explanation:
A market failure is one of the type of economical situation in which the the various types of products and the services are distributions in an inefficient manner.
A positive externality, negative externality and an asymmetric information are the market failure that the government wants to change by the process of intervention
Externality is one of the type of advantage or cost that basically affect the third party in the economics so the free market under consuming the various types of products. Therefore, the given answer is correct.
Answer:
Option E is correct.
All of the above
Explanation:
This is an example of political risk since The current political party in Maharashtra-Shiv sena intervened and used Enron for its selfish interests. When US department of energy issued a statement that cancelling Enron could endanger other private FDI from USA, the same was again used to further its selfish interests. Finally Maharashtra renegotiated its contract with Enron.
Answer:
the portfolio's return will be Ep(r)= 9.2 %
Explanation:
if the stock lies on the security market line , then the expected return will be
Ep(r) = rf + β*( E(M)- rf)
where
Ep(r) = expected return of the portfolio
rf= risk free return
E(M) = expected return of the market
β = portfolio's beta
then
Ep(r) = rf + β*( E(M)- rf)
E(M) = (Ep(r) - rf ) / β + rf
replacing values
E(M) = (Ep(r) - rf ) / β + rf
E(M) = ( 17.2% - 3.2%) /1.4 + 3.2% = 13.2%
since the stock and the risk free asset belongs to the security market line , a combination of both will also lie in this line, then the previous equation of expected return also applies.
Thus for a portfolio of β=0.6
Ep(r) = rf + β*( E(M)- rf) = 3.2% + 0.6*(13.2%-3.2%) = 9.2 %
Ep(r)= 9.2 %