123+125=248
…please if I’m right do mark Brainly-est
Answer:
1.33kg : 2kg : 1kg
Step-by-step explanation:
2kg : 3kg : 1.5 kg
Given data
We have the ratio
2kg : 3kg : 1.5 kg
Let us reduce the ratio further
2/1.5: 3/1.5 : 1.5/1.5
1.33kg : 2kg : 1kg
Hence the simplified ratio is 1.33kg : 2kg : 1kg
Anytime you subtract a negative number, it changes it to adding a positive number.
-2 + 0.7
Since we are adding, we will have an arrow going to the right
-2 + 0.7 = -1.3
Therefore, we will have a point starting at -2, an arrow pointing to the right and stopping at -1.3
Best of Luck!
From the figure shown, the interval is divided into 5 equal parts making each subinterval to be 0.2.
Part A:

The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2]+[y(0.8)\times0.2] \\ +[y(1)\times0.2] \\ \\ =[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2]+[\sqrt{1-(0.6)^2}\times0.2] \\ +[\sqrt{1-(0.8)^2}\times0.2]+[\sqrt{1-(1)^2}\times0.2] \\ \\ =(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2)+(0\times0.2) \\ \\ =0.196+0.183+0.16+0.12=0.659](https://tex.z-dn.net/?f=Area%3D%20%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%281%29%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%281%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%2B%280%5Ctimes0.2%29%20%5C%5C%20%20%5C%5C%20%3D0.196%2B0.183%2B0.16%2B0.12%3D0.659)
Part B:
The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0)\times0.2]+[y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2] \\ +[y(0.8)\times0.2] \\ \\ =[\sqrt{1-(0)^2}\times0.2]+[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2] \\ +[\sqrt{1-(0.6)^2}\times0.2] +[\sqrt{1-(0.8)^2}\times0.2] \\ \\ =(1\times0.2)+(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2) \\ \\ =0.2+0.196+0.183+0.16+0.12=0.859](https://tex.z-dn.net/?f=Area%3D%20%5By%280%29%5Ctimes0.2%5D%2B%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%281%5Ctimes0.2%29%2B%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%20%5C%5C%20%5C%5C%20%3D0.2%2B0.196%2B0.183%2B0.16%2B0.12%3D0.859)
Part C:
The approximate area of the given region is given by
The first term is -2. The fourth term is -16. And the last term is -256.
To find them, lets say the first term, replace n with 1. You can use this idea to find out the rest (which I've already done, but just to explain to you.).