Answer:
7/44
Step-by-step explanation:
you can't simply subtract 1/11 from 1/4 because the denominators are not the same . Meaning you have to convert the denominators into a similar number. Transformers in even number and a consecutive number while 11 is an odd number and a prime number they don't really agree on anything 11 can only be divided by itself and 1 wall for can be divided by a multitude of things. Because of them not exactly agreeing on any specific category , you have to multiply them by each other . So your new fractions should look like 11 / 44 and 4 / 44 . from there you can easily subtract 4 from 11 and get 7 / 44 now normally you can reduce these types of fractions but because seven can only be divided by itself and 44 is not a factor of 7 you cannot reduce this fraction .
Since there are two halves in a whole, you can times each number by 2 to get the number of halves it has.
12*2=24
10*2=20
13*2=26
15*2=30
8*2=16
5*2=10
Answer:
-10
Step-by-step explanation:
Answer:
@Genius102 has answered this already, but here it is
Step-by-step explanation:
a) the scale should go by 1,000 because that would show that the slope is growing by time.
b) the intervals should go by 500 because 18,500 is the last number, so it should be 500
Answer:
So, the volume is:

Step-by-step explanation:
We get the limits of integration:

We use the spherical coordinates and we calculate a triple integral:
![V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\](https://tex.z-dn.net/?f=V%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%5Cint_0%5E4%20%20%5Crho%5E2%20%5Csin%20%5Cvarphi%20%5C%2C%20d%5Crho%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Cleft%5B%5Cfrac%7B%5Crho%5E3%7D%7B3%7D%5Cright%5D_0%5E4%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Ccdot%20%5Cfrac%7B64%7D%7B3%7D%20%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5B-%5Ccos%20%5Cvarphi%5D_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5C)
we get:
![V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%5Csqrt%7B2%7D%7D%7B3%7D%5Ccdot%5B%5Ctheta%5D_0%5E%7B2%5Cpi%7D%5C%5C%5C%5CV%3D%5Cfrac%7B128%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D)
So, the volume is:
