I say B because then they would be able to tell how much pages of homework and how long it would take them.
Solution. To check whether the vectors are linearly independent, we must answer the following question: if a linear combination of the vectors is the zero vector, is it necessarily true that all the coefficients are zeros?
Suppose that
x 1 ⃗v 1 + x 2 ⃗v 2 + x 3 ( ⃗v 1 + ⃗v 2 + ⃗v 3 ) = ⃗0
(a linear combination of the vectors is the zero vector). Is it necessarily true that x1 =x2 =x3 =0?
We have
x1⃗v1 + x2⃗v2 + x3(⃗v1 + ⃗v2 + ⃗v3) = x1⃗v1 + x2⃗v2 + x3⃗v1 + x3⃗v2 + x3⃗v3
=(x1 + x3)⃗v1 + (x2 + x3)⃗v2 + x3⃗v3 = ⃗0.
Since ⃗v1, ⃗v2, and ⃗v3 are linearly independent, we must have the coeffi-
cients of the linear combination equal to 0, that is, we must have
x1 + x3 = 0 x2 + x3 = 0 ,
x3 = 0
from which it follows that we must have x1 = x2 = x3 = 0. Hence the
vectors ⃗v1, ⃗v2, and ⃗v1 + ⃗v2 + ⃗v3 are linearly independent.
Answer. The vectors ⃗v1, ⃗v2, and ⃗v1 + ⃗v2 + ⃗v3 are linearly independent.
Me so purple and american green the part herbs
Answer:
B. Your religious affiliation
Explanation:
The first part of your college application process includes providing your personal information. The basic information should include your:
- Name
- Social security number
- Current address
- Permanent address
- Telephone number
- Email address
- Birth date
- Citizenship
- Sex or gender
- Ethnic affiliation
- Parent or guardian contact information
Answering questions about your sex or gender and ethnic affiliation is usually optional and does not affect your application process. You will not be asked to provide information about your religious affiliation at all.