Answer:
2.29 ft of side length and 1.14 height
Step-by-step explanation:
a) Volume V = x2h, where x is side of square base and h is hite.
Then surface area S = x2 + 4xh because box is open.
b) From V = x2h = 6 we have h = 6/x2.
Substitude in formula for surface area: S = x2 + 4x·6/x2, S = x2 + 24/x.
We get S as function of one variable x. To get minimum we have to find derivative S' = 2x - 24/x2 = 0, from here 2x3 - 24 = 0, x3 = 12, x = (12)1/3 ≅ 2.29 ft.
Then h = 6/(12)2/3 = (12)1/3/2 ≅ 1.14 ft.
To prove that we have minimum let get second derivative: S'' = 2 + 48/x3, S''(121/3) = 2 + 48/12 = 6 > 0.
And because by second derivative test we have minimum: Smin = (12)2/3 + 4(12)1/3(12)1/3/2 = 3(12)2/3 ≅ 15.72 ft2
It’s 55 because lil baby is Galatea
Answer:
x = 3 should be the answer
Step-by-step explanation:
y is not graphed so y isn't part of the equation while x is so its X = K (K being the number that it goes up on) same thing applies to y if its horizontal then the equation is Y = K)
Answer:
( √15 + 8)/7
Step-by-step explanation:
TanA = -√15
.we are to find tan(A-π/4).
In trigonometry
Tan(A-B) = TanA - TanB/1+ tanAtanB
Hence:
tan(A-π/4) = TanA - Tanπ/4/1+ tanAtanπ/4
Substitute tan A value into the formula
tan(A-π/4) = -√15-tanπ/4 / 1+(-√15)(tanπ/4
tan(A-π/4) = -√15-1/1-√15
Rationalize
-√15-1/1-√15 × 1+√15/1+√15
= -√15-√225-1-√15/(1-√225)
= -2√15-15-1/1-15
= -2√15 -16/(-14)
= -2(√15+8)/-14
= √15 + 8/7
Hence the required value is ( √15 + 8)/7