If you just needed the points on the graph here it is! :) hope this helped !!
Answer:
19-12=7, so 4-7=-3, so b is equal to 19
Answer:we smoking fredoooooooooo
Answer:
![\left[\begin{array}{ccc}7\\4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%5C%5C4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
The answer is a single-column matrix (7,4,2)
Step-by-step explanation:
In such multiplication of matrices, you have to proceed by multiplying each ROW of the first matrix by the COLUMN of the second matrix. So,
![\left[\begin{array}{ccc}3&6&1\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (3 * 2) + (6 * 0) + (1 * 1) = 6 + 0 + 1 = 7](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%261%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%283%20%2A%202%29%20%2B%20%286%20%2A%200%29%20%2B%20%281%20%2A%201%29%20%3D%206%20%2B%200%20%2B%201%20%3D%207)
then...
![\left[\begin{array}{ccc}2&4&0\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (2 * 2) + (4 * 0) + (0 * 1) = 4 + 0 + 0 = 4](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%264%260%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%282%20%2A%202%29%20%2B%20%284%20%2A%200%29%20%2B%20%280%20%2A%201%29%20%3D%204%20%2B%200%20%2B%200%20%3D%204)
and
![\left[\begin{array}{ccc}0&6&2\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (0 * 2) + (6 * 0) + (2 * 1) = 0 + 0 + 2= 2](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%262%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%280%20%2A%202%29%20%2B%20%286%20%2A%200%29%20%2B%20%282%20%2A%201%29%20%3D%200%20%2B%200%20%2B%202%3D%202)
I hope it helps.
Determine whether the relation is a function. {(−3,−6),(−2,−4),(−1,−2),(0,0),(1,2),(2,4),(3,6)}
Gennadij [26K]
Answer:
The relation is a function.
Step-by-step explanation:
In order for the relation to be a function, every input must only have one output. Basically, you can't have 2 outputs for 1 input but you can have 2 inputs for 1 output. Looking at all of the points in the relation, we see that no input has multiple outputs, so the answer is yes, the relation is a function.