Given:
The x and y axis are tangent to a circle with radius 3 units.
To find:
The standard form of the circle.
Solution:
It is given that the radius of the circle is 3 units and x and y axis are tangent to the circle.
We know that the radius of the circle are perpendicular to the tangent at the point of tangency.
It means center of the circle is 3 units from the y-axis and 3 units from the x-axis. So, the center of the circle is (3,3).
The standard form of a circle is:

Where, (h,k) is the center of the circle and r is the radius of the circle.
Putting
, we get


Therefore, the standard form of the given circle is
.
Answer:
A
Step-by-step explanation:
Answer for the equation by elimination
Answer: 0.025
Step-by-step explanation:
Given : A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between the interval [48.0 minutes, 58.0 minutes].
The probability density function :-

Now, the probability that a given class period runs between 50.25 and 50.5 minutes is given by :-
![\int^{50.5}_{50.25}\ f(x)\ dx\\\\=\int^{50.5}_{50.25}\ \dfrac{1}{10}\ dx\\\\=\dfrac{1}{10}|x|^{50.5}_{50.25}\\\\=\dfrac{1}{10}\ [50.5-50.25]=\dfrac{1}{10}\times(0.25)=0.025](https://tex.z-dn.net/?f=%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20f%28x%29%5C%20dx%5C%5C%5C%5C%3D%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20%5Cdfrac%7B1%7D%7B10%7D%5C%20dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%7Cx%7C%5E%7B50.5%7D_%7B50.25%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%5C%20%5B50.5-50.25%5D%3D%5Cdfrac%7B1%7D%7B10%7D%5Ctimes%280.25%29%3D0.025)
Hence, the probability that a given class period runs between 50.25 and 50.5 minutes =0.025
Similarly , the probability of selecting a class that runs between 50.25 and 50.5 minutes = 0.025
Answer:
this is only one functions, it means all is correct.