Put the values you know in the formula and solve for the constant of variation.
.. y = kx^2
.. k = y/x^2 . . . . . fill in values for y and x and compute.
Answer:
The system of equations is :
Equation 1- 
Equation 2- 
Number of vinyl doghouse = 5
Number of treated lumber doghouse =12.5
Step-by-step explanation:
Let x be the number of vinyl doghouses
y be the number of treated lumber doghouses
→If it takes the company 5 hours to build a vinyl doghouses and 2 hours to build a treated lumber doghouse. The company dedicates 50 hours every week towards assembling and painting doghouses.
Equation 1- 
→It takes an additional hour to paint each vinyl doghouse and an additional 2 hours to assemble each treated lumber doghouse. The company dedicates 30 hours every week towards assembling and paining dog houses.
Equation 2- 
→When we solve these equation we get the number of vinyl doghouse and treated lumber doghouse.
Subtract equation 2 from equation 1




Put value of x in equation 2





Therefore, number of vinyl doghouse = 5, number of treated lumber doghouse =12.5
Answer:
Step-by-step explanation:
x - y = (6 - 5)(y - x) → False
(x - y) (6 - 5) = 1 → False
x- y = (1)(x - y) → True
x - y = 1 + (x - y) → No solution, False
x - y = (6 - 5)(x - y) → True
<span>Simplifying
X2 + -4 = 0
Reorder the terms:
-4 + X2 = 0
Solving
-4 + X2 = 0
Solving for variable 'X'.
Move all terms containing X to the left, all other terms to the right.
Add '4' to each side of the equation.
-4 + 4 + X2 = 0 + 4
Combine like terms: -4 + 4 = 0
0 + X2 = 0 + 4
X2 = 0 + 4
Combine like terms: 0 + 4 = 4
X2 = 4
Simplifying
X2 = 4
Take the square root of each side:
X = {-2, 2}</span>