Hi there! You have to remember these 6 basic Trigonometric Ratios which are:
- sine (sin) = opposite/hypotenuse
- cosine (cos) = adjacent/hypotenuse
- tangent (tan) = opposite/adjacent
- cosecant (cosec/csc) = hypotenuse/opposite
- secant (sec) = hypotenuse/adjacent
- cotangent (cot) = adjacent/opposite
- cosecant is the reciprocal of sine
- secant is the reciprocal of cosine
- cotangent is the reciprocal of tangent
Back to the question. Assuming that the question asks you to find the cosine, sine, cosecant and secant of angle theta.
What we have now are:
- Trigonometric Ratio
- Adjacent = 12
- Opposite = 10
Looks like we are missing the hypotenuse. Do you remember the Pythagorean Theorem? Recall it!
Define that c-term is the hypotenuse. a-term and b-term can be defined as adjacent or opposite
Since we know the value of adjacent and opposite, we can use the formula to find the hypotenuse.
- 10²+12² = c²
- 100+144 = c²
- 244 = c²
Thus, the hypotenuse is:

Now that we know all lengths of the triangle, we can find the ratio. Recall Trigonometric Ratio above! Therefore, the answers are:
- cosine (cosθ) = adjacent/hypotenuse = 12/(2√61) = 6/√61 = <u>(6√61) / 61</u>
- sine (sinθ) = opposite/hypotenuse = 10/(2√61) = 5/√61 = <u>(5√61) / 61</u>
- cosecant (cscθ) is reciprocal of sine (sinθ). Hence, cscθ = (2√61/10) = <u>√61/5</u>
- secant (secθ) is reciprocal of cosine (cosθ). Hence, secθ = (2√61)/12 = <u>√</u><u>61</u><u>/</u><u>6</u>
Questions can be asked through comment.
Furthermore, we can use Trigonometric Identity to find the hypotenuse instead of Pythagorean Theorem.
Hope this helps, and Happy Learning! :)
Answer:
5, assuming you get the worst possible slips off: 0,1,2,3,4
Step-by-step explanation:
Answer:
mark me as brainliest and follow and like my answer
Step-by-step explanation:
225n=540
n=2.4
Answer:
A is the only solution.
Step-by-step explanation:
A simple way to solve it is to plug in the x and y values
For A, we plug in 2 for x and 3 for y
3-3=5(2-2)
0=5(0)
0=0
Ordered pair A is a solution
For B, plug in 3 for x and 2 for y
2-3=5(3-2)
-1=5(1)
-1 does not equal 5
Therefore only A is a solution