we'll start off by grouping some

so we have a missing guy at the end in order to get the a perfect square trinomial from that group, hmmm, what is it anyway?
well, let's recall that a perfect square trinomial is

so we know that the middle term in the trinomial, is really 2 times the other two without the exponent, well, in our case, the middle term is just "x", well is really -x, but we'll add the minus later, we only use the positive coefficient and variable, so we'll use "x" to find the last term.

so, there's our fellow, however, let's recall that all we're doing is borrowing from our very good friend Mr Zero, 0, so if we add (1/2)², we also have to subtract (1/2)²
![\bf \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2-\left[ \cfrac{1}{2} \right]^2 \right)=6\implies \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2 \right)-\left[ \cfrac{1}{2} \right]^2=6 \\\\\\ \left(x-\cfrac{1}{2} \right)^2=6+\cfrac{1}{4}\implies \left(x-\cfrac{1}{2} \right)^2=\cfrac{25}{4}\implies x-\cfrac{1}{2}=\sqrt{\cfrac{25}{4}} \\\\\\ x-\cfrac{1}{2}=\cfrac{\sqrt{25}}{\sqrt{4}}\implies x-\cfrac{1}{2}=\cfrac{5}{2}\implies x=\cfrac{5}{2}+\cfrac{1}{2}\implies x=\cfrac{6}{2}\implies \boxed{x=3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29%3D6%5Cimplies%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D6%2B%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D%5Ccfrac%7B25%7D%7B4%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Csqrt%7B%5Ccfrac%7B25%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B%5Csqrt%7B25%7D%7D%7B%5Csqrt%7B4%7D%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B5%7D%7B2%7D%2B%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B6%7D%7B2%7D%5Cimplies%20%5Cboxed%7Bx%3D3%7D)
Answer: The distance is d = 13 .
Step-by-step explanation:
In order to find the distance between the two points, you need the distance formula:
where there is
and
.
-Use the those two points
and
for this formula:

-Then, you start solving:





So, therefore, the result is
.
Answer with step-by-step explanation:
The way the question is worded, this actually shouldn't be correct. The correct answer should be
.
Because the trapezoids are similar, we can find the ratio of their perimeters by actually just finding the ratio of their sides.
Why?
By definition, the corresponding sides of a polygon are in a constant proportion. The perimeter is simply the sum of all sides of the polygon. Since we're just adding the sides, the proportion will still be maintained.
Therefore, we'll just need to ratio of their corresponding sides. The only two corresponding sides that are marked are
and
.
The ratio of
is
.
The reason why it ideally should be
and not
is because the question states
, which mentions
first, so our answer should follow this respective order. I believe you were marked right anyways because the specific order is not specified, but generally, you want to give your answer respectively by default.
Answer:
Step-by-step explanation:
For the first question the answer is 50(0.2 + 1)^2 = 72
For the second question it is y = 32
Step-by-step explanation:
In case you need to see how i got it...it's below
For number 1, y is proportional to (x + 1)^2
The equation would be y(x +1)^2 = k(the constant). Then I substituted numbers you gave me in the equation which was : 50(0.2 + 1)^2 = k(72)
For number 2 I used this equation: y (x + 1)^2 = 72. I substituted x for 0.5. The equation will be: y(0.5 + 1)^2 = 72. Then I got 32 for y.
Hope this helps:) i am the best lil kissman
Slope of the line is -0.5
Step-by-step explanation:
- Step 1: Find the slope of the line using the equation
m = (y2 - y1)/(x2 - x1); Here x1 = -6, y1 = 1, x2 = 4 and y2 = -4
⇒ m = (-4 - 1)/(4 - -6)
= -5/10 = -1/2 = -0.5