1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
15

Change the repaying decimal into fraction. Plz help

Mathematics
1 answer:
Aneli [31]3 years ago
4 0
25/99 =.25 (25 repeat)

hope it helps
You might be interested in
Classify 8x^3+32x^2+x+4.......
liq [111]

Answer:

(x+4)( 8x^{2}+1)

Step-by-step explanation:

:)

4 0
1 year ago
Help me I don't understand this ​
Lelechka [254]

Answer:

3.5 Inches of snow left on Friday Night

Step-by-step explanation:

On Monday there was no snow

On Tuesday there was 3 inches

On Wednesday 3 - 0.5 inches= 2.5 inches of snow

On Thursday 2.5 + 2.5 inches= 5 inches

On Friday 5 - 1.5 inches=3.5 inches

Therefore the answer is that the was 3.5 inches of snow Friday night

8 0
3 years ago
The statue of Liberty stands on a 150 ft. pedestal. From a point 250 ft. from the base of the
bekas [8.4K]

Answer:

148ft

Step-by-step explanation:

To solve this question, you'll have to imagine the statue makes a right angle triangle with the base since it has an angle of elevation from the base to the top of the torch.

Assuming the height from the pedestal to the top of the torch is y

The height of the statue is x

But we know the height of the pedestal = 150ft

The distance from the observer to the base of the pedestal = 250ft

And the angle of elevation = 50°

See attached document for better illustration.

Tanθ = opposite / adjacent

θ = 50°

Adjacent = 250

Opposite = y

Tan50 = t / 250

y = 50 × tan50

y = 50 × tan50

y = 50 × 1.1917

y = 297.925ft

The height of the statue from the base of the pedestal to the top of the torch is 297.925ft

The height of the statue = x

x = (height of the statue + height of the pedestal) - height of the pedestal

x = y - 150

x = 297.925 - 150

x = 147.925ft

Approximately 148ft

The height of the statue is 148ft

4 0
3 years ago
Solve the Anti derivative.​
Alex Ar [27]

Answer:

\displaystyle \int {\frac{1}{9x^2+4}} \, dx = \frac{1}{6}arctan(\frac{3x}{2}) + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Antiderivatives - integrals/Integration

Integration Constant C

U-Substitution

Integration Property [Multiplied Constant]:                                                                \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:                                                                                                           \displaystyle \int {\frac{du}{a^2 + u^2}} = \frac{1}{a}arctan(\frac{u}{a}) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int {\frac{1}{9x^2 + 4}} \, dx<u />

<u />

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Factor fraction denominator:                                                         \displaystyle \int {\frac{1}{9(x^2 + \frac{4}{9})}} \, dx
  2. [Integral] Integration Property - Multiplied Constant:                                   \displaystyle \frac{1}{9} \int {\frac{1}{x^2 + \frac{4}{9}}} \, dx

<u>Step 3: Identify Variables</u>

<em>Set up u-substitution for the arctan trig integration.</em>

\displaystyle u = x \\ a = \frac{2}{3} \\ du = dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Substitute u-du:                                                                               \displaystyle \frac{1}{9} \int {\frac{1}{u^2 + (\frac{2}{3})^2} \, du
  2. [Integral] Trig Integration:                                                                               \displaystyle \frac{1}{9}[\frac{1}{\frac{2}{3}}arctan(\frac{u}{\frac{2}{3}})] + C
  3. [Integral] Simplify:                                                                                           \displaystyle \frac{1}{9}[\frac{3}{2}arctan(\frac{3u}{2})] + C
  4. [integral] Multiply:                                                                                           \displaystyle \frac{1}{6}arctan(\frac{3u}{2}) + C
  5. [Integral] Back-Substitute:                                                                             \displaystyle \frac{1}{6}arctan(\frac{3x}{2}) + C

Topic: AP Calculus AB

Unit: Integrals - Arctrig

Book: College Calculus 10e

7 0
3 years ago
Use the number line to determine the unknown addend in the given number sentence.
Gnesinka [82]

Answer:

C

Step-by-step explanation:

-4+(-5)=-9

-4=-9+5

-4=-4......correct

5 0
3 years ago
Read 2 more answers
Other questions:
  • a building in san francisco is shaped like a square pyramid it has a slant height og 856.1 feet and each side of its base is 145
    9·1 answer
  • 12 points for!
    7·1 answer
  • Two rays with a common endpoint
    9·2 answers
  • Find the value of x.
    10·1 answer
  • Find the height of the triangle by applying formulas for the area of a triangle and your knowledge about triangles.
    8·2 answers
  • What is the value of the expression 8−2 ? 116 64 −16 164
    7·1 answer
  • Please please please help me
    5·1 answer
  • David has a garden with dimensions 11 feet long x 9 feet wide. He wants to enlarge the garden to an area of 126 square feet. How
    8·2 answers
  • Solve set of each equation <br> 2|3x-2|= 14
    11·1 answer
  • This problem is about Unit rates, though I don't exactly understand, could you guys help?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!