Answer:
49/8 is the value of k
Step-by-step explanation:
We have the system
x = -2y^2 - 3y + 5
x=k
We want to find k such that the system intersects once.
If we substitute the second into the first giving us k=-2y^2-3y+5 we should see we have a quadratic equation in terms of variable y.
This equation has one solution when it's discriminant is 0.
Let's first rewrite the equation in standard form.
Subtracting k on both sides gives
0=-2y^2-3y+5-k
The discriminant can be found by evaluating
b^2-4ac.
Upon comparing 0=-2y^2-3y+5-k to 0=ax^2+bx+c, we see that
a=-2, b=-3, and c=5-k.
So we want to solve the following equation for k:
(-3)^2-4(-2)(5-k)=0
9+8(5-k)=0
Distribute:
9+40-8k=0
49-8k=0
Add 8k on both sides:
49=8k
Divide both sides by 8"
49/8=k
5y+2x=10y=−25x+2246810−2−4−6−8−10246810−2−4−6−8−10Let's solve for x.5y+2x=10Step 1: Add -5y to both sides.2x+5y+−5y=10+−5y2x=−5y+10Step 2: Divide both sides by 2.2x2=−5y+102x=−52y+5Answer:x=−52y+5
Answer:
d = 10√10 ≈ 31.62
Step-by-step explanation:
d = √l²+w²+h²
d = √5²+8²+2²
d = √25+81+4
d = √110
d = 10*√10
Answer:
1/4
Step-by-step explanation: