1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
15

Find the product 5,384 x 65

Mathematics
2 answers:
kirill115 [55]3 years ago
8 0

5,384 x 65

Answer : 349,960

erastovalidia [21]3 years ago
7 0
5,384 x 65 = 349,960
You might be interested in
2.5 miles into _______inches
EleoNora [17]
One mile is equal to 63,360 inches.
This means that you would have to multiply 63,360 by 2.5 which will give you... 158,400inches
Hope this helped:)
7 0
3 years ago
A tank contains 180 gallons of water and 15 oz of salt. water containing a salt concentration of 17(1+15sint) oz/gal flows into
Stels [109]

Let A(t) denote the amount of salt (in ounces, oz) in the tank at time t (in minutes, min).

Salt flows in at a rate of

\dfrac{dA}{dt}_{\rm in} = \left(17 (1 + 15 \sin(t)) \dfrac{\rm oz}{\rm gal}\right) \left(8\dfrac{\rm gal}{\rm min}\right) = 136 (1 + 15 \sin(t)) \dfrac{\rm oz}{\min}

and flows out at a rate of

\dfrac{dA}{dt}_{\rm out} = \left(\dfrac{A(t) \, \mathrm{oz}}{180 \,\mathrm{gal} + \left(8\frac{\rm gal}{\rm min} - 8\frac{\rm gal}{\rm min}\right) (t \, \mathrm{min})}\right) \left(8 \dfrac{\rm gal}{\rm min}\right) = \dfrac{A(t)}{180} \dfrac{\rm oz}{\rm min}

so that the net rate of change in the amount of salt in the tank is given by the linear differential equation

\dfrac{dA}{dt} = \dfrac{dA}{dt}_{\rm in} - \dfrac{dA}{dt}_{\rm out} \iff \dfrac{dA}{dt} + \dfrac{A(t)}{180} = 136 (1 + 15 \sin(t))

Multiply both sides by the integrating factor, e^{t/180}, and rewrite the left side as the derivative of a product.

e^{t/180} \dfrac{dA}{dt} + e^{t/180} \dfrac{A(t)}{180} = 136 e^{t/180} (1 + 15 \sin(t))

\dfrac d{dt}\left[e^{t/180} A(t)\right] = 136 e^{t/180} (1 + 15 \sin(t))

Integrate both sides with respect to t (integrate the right side by parts):

\displaystyle \int \frac d{dt}\left[e^{t/180} A(t)\right] \, dt = 136 \int e^{t/180} (1 + 15 \sin(t)) \, dt

\displaystyle e^{t/180} A(t) = \left(24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t)\right) e^{t/180} + C

Solve for A(t) :

\displaystyle A(t) = 24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t) + C e^{-t/180}

The tank starts with A(0) = 15 oz of salt; use this to solve for the constant C.

\displaystyle 15 = 24,480 - \frac{66,096,000}{32,401} + C \implies C = -\dfrac{726,594,465}{32,401}

So,

\displaystyle A(t) = 24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t) - \frac{726,594,465}{32,401} e^{-t/180}

Recall the angle-sum identity for cosine:

R \cos(x-\theta) = R \cos(\theta) \cos(x) + R \sin(\theta) \sin(x)

so that we can condense the trigonometric terms in A(t). Solve for R and θ :

R \cos(\theta) = -\dfrac{66,096,000}{32,401}

R \sin(\theta) = \dfrac{367,200}{32,401}

Recall the Pythagorean identity and definition of tangent,

\cos^2(x) + \sin^2(x) = 1

\tan(x) = \dfrac{\sin(x)}{\cos(x)}

Then

R^2 \cos^2(\theta) + R^2 \sin^2(\theta) = R^2 = \dfrac{134,835,840,000}{32,401} \implies R = \dfrac{367,200}{\sqrt{32,401}}

and

\dfrac{R \sin(\theta)}{R \cos(\theta)} = \tan(\theta) = -\dfrac{367,200}{66,096,000} = -\dfrac1{180} \\\\ \implies \theta = -\tan^{-1}\left(\dfrac1{180}\right) = -\cot^{-1}(180)

so we can rewrite A(t) as

\displaystyle A(t) = 24,480 + \frac{367,200}{\sqrt{32,401}} \cos\left(t + \cot^{-1}(180)\right) - \frac{726,594,465}{32,401} e^{-t/180}

As t goes to infinity, the exponential term will converge to zero. Meanwhile the cosine term will oscillate between -1 and 1, so that A(t) will oscillate about the constant level of 24,480 oz between the extreme values of

24,480 - \dfrac{267,200}{\sqrt{32,401}} \approx 22,995.6 \,\mathrm{oz}

and

24,480 + \dfrac{267,200}{\sqrt{32,401}} \approx 25,964.4 \,\mathrm{oz}

which is to say, with amplitude

2 \times \dfrac{267,200}{\sqrt{32,401}} \approx \mathbf{2,968.84 \,oz}

6 0
2 years ago
A population of 200 animals is decreasing by 4% per year. At this rate, in how many years will the population be less than 170?
djyliett [7]
The population will be less that 170 in 4 years
8 0
3 years ago
Read 2 more answers
The speed limit on a road is 45 miles per hour. What is this rate in miles per​ minute?
MaRussiya [10]

Answer:

0.7499 miles per minute

Step-by-step explanation:

Google "what is 45 mph to minutes"

3 0
3 years ago
Read 2 more answers
What is 2 x 10/8 in simplest form 4 grade
maksim [4K]

The fraction is 5/2

The decimal is 2.5

5 0
2 years ago
Other questions:
  • You ride your bike to campus a distance of 6 miles and return home on the same route. Going to​ campus, you ride mostly downhill
    11·2 answers
  • I need help asapppp please help mee
    9·2 answers
  • Which of the following is the general term for the sequence
    12·1 answer
  • Jenny is picking up carrots at a farm. Jenny put each carrots in 4 boxes. Jenny figures out that there are 20 carrots in each bo
    8·1 answer
  • If 3 drinks cost $9.00, how much will 5 drinks cost
    13·2 answers
  • Plss.. help me po goisss:( BRAINLIEST KO PO YUNG TAMANG SAGOT PLSS:(​
    14·2 answers
  • What is the answer to the problem 50 Х200=
    13·1 answer
  • The equation y = 180 + 5x represents the amount the cheerleaders will pay a company for custom stadium blankets, where x represe
    8·1 answer
  • Jacob distributed a survey to his fellow students asking them how many hours they'd spent playing sports in the past day. He als
    13·2 answers
  • HELLLLLLP!!!PLZ Any one know this?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!