1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
3 years ago
12

A bank is experimenting with programs to direct bill companies for commercial loans. They are particularly interested in the num

ber of errors of a billing program. To examine a particular program, a simulation of 1000 typical loans is run through the program. The simulation yielded a mean of 4.6 errors with a standard deviation of 0.5. Consturct a 95% confidence interval on the true mean error rate.
Mathematics
2 answers:
larisa [96]3 years ago
8 0

Answer:

95% confidence interval on the true mean error rate = [4.57 , 4.63] .

Step-by-step explanation:

We are given that to examine a particular program, a simulation of 1000 typical loans is run through the program.                                                         The simulation yielded a Mean,Xbar = 4.6 errors with a Standard deviation,s = 0.5.

Since, here we know nothing about population standard deviation so we will use t statistics quantity here i.e.;

                       \frac{Xbar-\mu}{\frac{s}{\sqrt{n} } } ~ t_n_-_1  where, Xbar = sample mean

                                                              s    = sample standard deviation

                                                              n  = sample size(no. of simulations)

                                                              \mu = population mean or true mean

So, 95% confidence interval on the true mean error rate is given by;

P(-1.96 < t_9_9_9 < 1.96) = 0.95 {because at 5% significance level t table gives

                                                  value close to 1.96}

P(-1.96 < \frac{Xbar-\mu}{\frac{s}{\sqrt{n} } }  < 1.96) = 0.95

P(-1.96 * \frac{s}{\sqrt{n} } < Xbar - \mu < 1.96 * \frac{s}{\sqrt{n} } ) = 0.95

P(-Xbar - 1.96 * \frac{s}{\sqrt{n} } < -\mu < Xbar - 1.96 * \frac{s}{\sqrt{n} } ) = 0.95

P( Xbar - 1.96 * \frac{s}{\sqrt{n} } < \mu < Xbar + 1.96 * \frac{s}{\sqrt{n} } ) = 0.95

95% Confidence interval for \mu = [Xbar - 1.96 * \frac{s}{\sqrt{n} } , Xbar + 1.96 * \frac{s}{\sqrt{n} } ]

                                                  = [4.6 - 1.96*\frac{0.5}{\sqrt{1000} } , 4.6 + 1.96*\frac{0.5}{\sqrt{1000} } ]

                                                  = [4.57 , 4.63]

Therefore, 95% confidence interval on the true mean error rate is        [4.57 , 4.63] .

Evgesh-ka [11]3 years ago
7 0

Answer:

The 95% confidence interval for true mean error is (4.57, 4.63).

Step-by-step explanation:

Let <em>X</em> = the number of errors of a billing program.

According to the Central limit theorem if a large sample (<em>n</em> > 30) is drawn from an unknown population then the sampling distribution of the sample mean will follow a Normal distribution with mean (\mu_{\bar x}=\mu) and standard deviation      (\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}).

The sample size of the loans is, <em>n</em> = 1000.

The mean is, {\bar x}=4.6.

The standard deviation is,  \sigma_{\bar x}=\frac{0.50}{\sqrt{1000}}=0.016

The confidence interval for mean is:

CI=\bar x\pm z_{\alpha /2}\times \sigma_{\bar x}

The critical value of <em>z</em> for 95% confidence interval is:

z_{\alpha /2}=z_{0.05/2}=z_{0.025}=1.96

**Use the <em>z</em>-table for critical values.

Compute the 95% confidence interval for true mean error as follows:

CI=\bar x\pm z_{\alpha /2}\times \sigma_{\bar x}\\=4.6\pm1.96\times0.016\\=4.6\pm0.03136\\=(4.56864, 4.63136)\\\approx(4.57, 4.63)

Thus, the 95% confidence interval for true mean error is (4.57, 4.63).

You might be interested in
Find all complex solutions of 7x^2-7x+3=0
Sedaia [141]

Answer:

The complex solutions are

x =  (\frac{7-\sqrt{35}  i }{42} , ) x =  \frac{7 + \sqrt{35} i }{42})

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given equation  7 x² - 7 x +3=0

                     x =  (\frac{-b -\sqrt{b^{2}-4ac } }{2ac} ,  \frac{-b +\sqrt{b^{2}-4ac } }{2ac})

Given standard equation

                         a x² +b x +c =0

 a = 7 , b= -7 and c=3

<u><em>Step(ii):-</em></u>

<u><em></em></u>x =  (\frac{-(-7) -\sqrt{(-7)^{2}-4(7)(3) } }{2(7)(3)} ,  \frac{-(-7) +\sqrt{(-7)^{2}-4(7)(3) } }{2(7)(3)})<u><em></em></u>

<u><em></em></u>x =  (\frac{7-\sqrt{(49-84 } }{42} ,  \frac{7 +\sqrt{(49-84 } }{42})<u><em></em></u>

x =  (\frac{7-\sqrt{35i^{2} }  }{42} ,  \frac{7 + \sqrt{35i^{2} }  }{42})

x =  (\frac{7-\sqrt{35}  i }{42} ,  \frac{7 + \sqrt{35} i }{42})

<u><em></em></u>

8 0
2 years ago
Can someone help explain please
Vitek1552 [10]

Answer:

step by step^^ hope this helps

3 0
3 years ago
Given the area of a triangle is 25x2 + 10x - 8 and the base is 5x + 4, write the algebraic expression for the height.
agasfer [191]

Answer:

the height is 5x-2

Step-by-step explanation:

factor 25x^2+10x-8=(5x-2)(5x+4)

\frac{(5x-2)(5x+4)}{5x+4}

cancel like terms

height = 5x-2

5 0
2 years ago
A triangle cannot be both A. obtuse and right. B. acute and isosceles. C. equilateral and equiangular. D. scalene and acute.
Lady bird [3.3K]
A.) A Triangle cannot be both "Obtuse and Right"

[ It must be either Obtuse, Right or Acute. Never with two multiple properties ]

Hope this helps!
6 0
3 years ago
Read 2 more answers
Find the perimeter of triangles are 3.6, 5.7,4.5c
garri49 [273]

Answer:

13.8 cm

Step-by-step explanation:

the sides of the triangle measure 3.6, 5.7,4.5cm?

So, we have

perimeter is 3.6 + 5.7 + 4.5

13.8 cm

3 0
3 years ago
Other questions:
  • Indicate the equation of the line through (2, -4) and having slope of 3/5.
    8·2 answers
  • Is (4,3) a solution to 2x-y &lt;4?
    14·2 answers
  • A state park has two pools. The olympic size pool holds 8.12 x 105 gallons of water and the smaller pool holds 5.27 x 105 gallon
    13·2 answers
  • Mariam is shopping at a department store. She is looking at candles for $6.50 each, tablecloths for $13.99 each, and lamps for $
    7·1 answer
  • 30 POINTS!!! PLEASE ANSWER SOON. WILL MARK BRAINLIEST
    9·1 answer
  • How do variables help you model real-world situations? Give an example of a model that uses variables and explain how it helps p
    6·2 answers
  • The number of clicks for a search text ad is 50 and the number of impressions is 5000. The CTR would be Group of answer choices
    10·1 answer
  • I need help please solve for x and y rectangles
    10·1 answer
  • Will give random brainliest if 10 users comment or answer and put #brainliest
    9·2 answers
  • 1.42 + 8.43 =<br> 09.15<br> 9.43<br> 9.85<br> 9.99
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!