Answer: Enzymes <u>b. increase</u> the rate of a specific chemical reaction.
Answer:
I think the question is "How might an RNA-based genome results display an increased in infection rate?" because current statement doesn't convey a message clearly.
Explanation:
To answer this question, we need to understand first that what is gene expression. Gene expression is a process in which genetic information is transcribed first to RNA and then into proteins. During transcription stage, only active genes would be transcribed to RNA and all other DNA material don't transcribe at all. Now, if there is an infection, host cell would express only those genes which would actively take part in the defense mechanism, e.g. R-genes, genes involved in production of reactive oxygen species, etc. Hence, to monitor the infection rate, we will look at the RNA-based genome. To do this, we will extract the total RNA and then would sequence it. Then we will annotate the genes and check the relative abundance (differential expression). Finally, we would have a clear that these genes were active against the infection. By doing temporal sampling and sequencing, we would be able to measure the rate as well.
For the second part, potential complications that could arise in doing analysis is the lower amount of RNA, or rapid degradation of RNA in case of presence of RNAses. RNA can be degraded easily at room temperature.
The correct answer is signal transduction.
Signal transduction also called cell signaling refers to the conduction of molecular signals from the external of the cell to its internal. The signals perceived by the cells must be conducted efficiently into the cell to make sure an effective response. This step is stimulated by cell-surface receptors.
There are three phases in the procedure of communication or cell signaling, that is, reception, transduction, and response.
The answer is binomial nomenclature , also called binary nomenclature
Explanation:
Bohr proposed his quantized shell model of the atom to explain how electrons can have stable orbits around the nucleus. The motion of the electrons in the Rutherford model was unstable because, according to classical mechanics and electromagnetic theory, any charged particle moving on a curved path emits electromagnetic radiation; thus, the electrons would lose energy and spiral into the nucleus.