1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
5

Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca

ses.(a) p = 433, g = 7, a = 166.(b) p = 746497, g = 10, a = 243278.(c) p = 41022299, g = 2, a = 39183497. (Hint. p =2·295 + 1.)(d) p = 1291799, g = 17, a = 192988. (Hint. p−1 has a factor of 709.)
Mathematics
1 answer:
qaws [65]3 years ago
3 0

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

You might be interested in
How to multiply 396×37
Jet001 [13]
Align the numbers 

 396
x 37

1) Times 396 by 7 >  396
                                  x  7
    Answer : 2772

      *align the numbers correctly       396
                                                           x 7
                                                         2772

2) Times 396 by 3 > 396
                                x   3
    Answer : 1188              396
                                          x 3
                                        1188
     396    <COMPLETE ANSWER
    x 37
   2772
 1188
14652 
8 0
4 years ago
The local meteorologist is converting temperatures from Celsius to Fahrenheit. she knows that the formula for the conversion fro
andreev551 [17]
In this equation, we are solving for f. The first thing we have to do is get rid of the denominator, so we have to multiply both sides by 9, which leaves us with 9C=5*(f-32). Then we divide both sides by 5, which is 9/5C=f-32. The last thing we have to do is add 32 to both sides to isolate f, which gives us our final equation of (5/9)C+32=f. 
6 0
4 years ago
Jonathan receives a paycheck every other week. Here is a copy of one of his pay statements. If there are 2 paydays per month, wh
statuscvo [17]
The answer is 475.90 I believe I am not that good at math lol
8 0
3 years ago
Given sin theta = 2/5 and 0 theta 90 find sin 2 theta
Liono4ka [1.6K]

Given:  sin theta = 2/5.  This tells us that the lengths of the opp side and the hyp are 2 and 5 respectively.  The adj side is found using the Pyth. Thm.:  5^2-2^2= 25-4 = 21, so that the adj side is sqrt(21).

The double angle formula for the sine is sin 2theta = 2 sin theta *cos theta.

In this particular problem, the sine of 2theta is 2*(2/5)*[sqrt(21) / 5], or:

                                                                              (4/25)*sqrt(21).

6 0
4 years ago
Read 2 more answers
The line graphed below passes through the points (-5, 0) and (0, -4). Use the slope formula to calculate the slope between the g
atroni [7]

Slope is -4/5

Step-by-step explanation:

  • Step 1: Given points are (-5,0) and (0,-4). Find the slope using the formula m = (y2 - y1)/(x2 - x1) Here, x1 = -5, x2 = 0, y1 = 0 and y2 = -4

⇒ m = (-4 - 0)/(0 - -5) = -4/5

8 0
3 years ago
Read 2 more answers
Other questions:
  • A sphere has a radius of 3.6 yd. What is the volume of the sphere?​
    15·2 answers
  • 0.147 as a fraction please?
    6·1 answer
  • A table is on sale with a 40% discount off the regular price. if the regular price of the table is $224.90, what is the sale pri
    11·1 answer
  • HELP ASAP please and thanks !!!
    15·2 answers
  • Please help i can't figure it out​
    11·1 answer
  • The city of Anville is currently home to 16000 people, and the population has been growing at a continuous rate of 4% per year.
    10·1 answer
  • HW HELP ASAP PLZZzzzzzzzz
    13·1 answer
  • Solve the problems.
    6·2 answers
  • How do I round 1765.385077 to the nearest cent?
    14·1 answer
  • Given: m/-3+10=-1; prove: m=33. Whats the reasonings??
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!