Bisector => AD = CD => 3y+6 = 5y-18 => 2y = 24
=> y=12
Should be the last one, 43, 52, 61.
By definition of tangent,
tan(<em>x</em>) = sin(<em>x</em>) / cos(<em>x</em>)
so if tan(<em>x</em>) < 0, and we're given cos(<em>x</em>) = -1/4 < 0, then it follows that sin(<em>x</em>) > 0.
Recall the Pythagorean identity:
cos²(<em>x</em>) + sin²(<em>x</em>) = 1 → sin(<em>x</em>) = + √(1 - cos²(<em>x</em>))
Then
sin(<em>x</em>) = √(1 - (-1/4)²) = √(15/16) = √(15)/4
Recall the double angle identity:
sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)
Then
sin(2<em>x</em>) = 2 • √(15)/4 • (-1/4) = -2√(15)/16 = -√(15)/8
Answer:
#5
-1 x 6 + 5 = b
#6
-4 + 5 then multiply by 10 to get x
Step-by-step explanation:
use PEMDAS to move each number from the left side of the equals sign to the right side until you only have the letter = a number. I'm not going to do your entire home work for you
Answer:
Fifth term: 3888. Sixth term: -23320
Step-by-step explanation:
Notice that -18 is 6 times the first term (3): -6(3) = -18. Next, 108 is the product of -6 and -18. Thus, the common ratio is -6.
If a(1) is the first term and r is the common ratio, a formula for the nth term is
a(n) = a(1)*r^(n-1).
Here, a(n) = 3*(-6)^(n-1). As a check, let's determine whether this formula correctly predicts the 4th term (-648):
a(4) = 3*(-6)^(4-1) = 3* (-6)^3 = 3(-216) = -648. Yes.
Thus, the 5th term is a(5) = 3*(-6)^(5-1) = 3* (-6)^4 = 3(1296) = 3888,
and
the 6th term is a(6) = 3*(-6)^(6-1) = 3* (-6)^5 = -23320.