Answer:
<h2>
∠PQT = 72°</h2>
Step-by-step explanation:
According to the diagram shown, ∠OPQ = ∠OQP = 18°. If PQT is a tangent to the circle, it can be inferred that line OQ is perpendicular to line QT. Ths shows that ∠OQT = 90°.
Also from the diagram, ∠OQP + ∠PQT = ∠OQT;
∠PQT = ∠OQT - ∠OQP
Given ∠OQP = 18° and ∠OQT = 90°
∠PQT = 90°-18°
∠PQT = 72°
Answer:
x = -16
Step-by-step explanation:
Answer:
d ≈ 1732 ft
Step-by-step explanation:
Angle of elevation = Angle of depression
Following this truth,
m∠PAQ (Angle of depression) = m∠APB (Angle of elevation) = 30°
By applying tangent rule in the given triangle ABP,
tan(30°) =
d = 1000√3
d = 1732.05
d ≈ 1732 ft
Answer:
x = 53
Step-by-step explanation:
The sum of the angle measures in a triangle is 180°:
91° + 36° + x° = 180°
x° = 180° -127° = 53°
x = 53
It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).