1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zepler [3.9K]
3 years ago
5

Solve the following equation -2|x-4|+7=-3

Mathematics
1 answer:
algol [13]3 years ago
7 0
-2|x-4|+7 = -3 

-2|x-4| = -10

|x-4| = 5

Two forms:

x-4 = 5 :  x = 9
or
x-4 = -5 : x = -1

You might be interested in
Which equation has the same solution as 4-2 (1-5) = 1 – 19?
lesya [120]
The answer will be D
3 0
3 years ago
How is the Distributive Property used to simplify operations with scientific notation
Citrus2011 [14]

Answer:

See explanation

Step-by-step explanation:

Let a,b, and c be real numbers.

The distributive property says that:

a(b + c) = ab + ac

Assuming we want to simplify:

10(5*10^{-1}+150*10^{-3})

We apply the distributive property to get:

10(5*10^{-1}+150*10^{-3}) = 5*10^{-1} \times 10+150*10^{-3} \times 10

We can now use rules of exponents to simplify further:

10(5*10^{-1}+150*10^{-3}) = 5*10^{-1} \times 10^{1} +150*10^{-3} \times 10^{1}

10(5*10^{-1}+150*10^{-3}) = 5*10^{-1 + 1} +150*10^{-3 + 1}

10(5*10^{-1}+150*10^{-3}) = 5*10^{0} +150*10^{-2}

10(5*10^{-1}+150*10^{-3}) = 5*1+1.50*10^{-2}x {10}^{2}

10(5*10^{-1}+150*10^{-3}) = 5*1+1.50*10^{-2 + 2}

10(5*10^{-1}+150*10^{-3}) = 5+1.50*10^{0} = 6.5 \times  {10}^{0}

4 0
3 years ago
Show all steps please
OLga [1]
9-8x\geq0\ \ \ |subtract\ 9\ from\ both\ sides\\\\-8x\geq-9\ \ \ \ |change\ signs\\\\8x\leq9\ \ \ \ |divide\ both\ sides\ by\ 8\\\\x\leq9\\\\  |9-8x|=\left\{\begin{array}{ccc}9-8x&for\ x\leq9\\8x-9&for\ x \ \textgreater \  9\end{array}\right

1^o\ x\in(-\infty;\ 9]\to|9-8x|=9-8x\\\\9(9-8x)=2x+3\\81-72x=2x+3\ \ \ \ |subtract\ 81\ from\ both\ sides\\-72x=2x-78\ \ \ \ |subtract\ 2x\ from\ both\ sides\\-74x=-78\ \ \ \ |divide\ both\ sides\ by\ (-74)\\\\x=\dfrac{-78:2}{-74:2}\\\\\boxed{x=\frac{39}{37}}\in(-\infty;\ 9]

2^o\ x\in(9;\ \infty)\to|9-8x|=8x-9\\\\9(8x-9)=2x+3\\72x-81=2x+3\ \ \ \ |add\ 81\ to\ both\ sides\\72x=2x+84\ \ \ \ |subtract\ 2x\ from\ both\ sides\\70x=84\ \ \ \ \ \ |divide\ both\ sides\ by\ 70\\\\x=\dfrac{84:14}{70:14}\\\\x=\dfrac{6}{5}\notin(9;\ \infty)\\\\\\Answer:\boxed{x=\frac{39}{37}}
6 0
4 years ago
Solve The System<br> -5x-5y=0<br> 6x+5y=12
Naddik [55]

9514 1404 393

Answer:

  (x, y) = (12, -12)

Step-by-step explanation:

The two equations can be added to solve for x.

  (-5x -5y) +(6x +5y) = (0) +(12)

  x = 12 . . . . . . . . simplify

  -5(12) -5(y) = 0 . . . substitute into the first equation

  12 +y = 0 . . . . . . . divide by -5

  y = -12 . . . . . . . . subtract 12

The solution is (x, y) = (12, -12).

5 0
3 years ago
Find the ratio of x to y. 2/3 4/9 1
nevsk [136]

Answer:

\frac{x}{y} = \frac{4}{9}

Step-by-step explanation:

Given

\frac{x}{5} = \frac{2}{3} = \frac{5}{y}

This can be expressed in 2 parts as

\frac{x}{5} = \frac{2}{3} ( cross- multiply )

3x = 10 ( divide both sides by 3 )

x = \frac{10}{3}

and

\frac{2}{3} = \frac{5}{y} ( cross- multiply )

2y = 15 ( divide both sides by 2 )

y = \frac{15}{2}

Thus

\frac{x}{y} = \frac{\frac{10}{3} }{\frac{15}{2} } = \frac{10}{3} × \frac{2}{15} ( cancel 10 and 15 by 5 )

\frac{x}{y} = \frac{2}{3} × \frac{2}{3} = \frac{4}{9}

6 0
3 years ago
Other questions:
  • Math Quiz Question! Measuring segments and Angles
    5·1 answer
  • Solve the nonhomogeneous differential equation y′′+25y=cos(5x)+sin(5x). Find the most general solution to the associated homogen
    15·1 answer
  • -1/2 +2=-x+7 how do you figure this out​
    11·1 answer
  • What is the least common multiple (LCM) of 7 and 9?
    11·2 answers
  • What is the answer to this
    14·2 answers
  • Draw the shape described below and find its total surface area.
    12·1 answer
  • Approximate 0.3632 to 2 decimal places ​
    7·2 answers
  • What is the value x in 8+6y=9
    14·1 answer
  • I need Answer pls plz pls pls
    10·1 answer
  • Consider AABC with vertices A(-2, -3) and B(-6, -6) and C(-8, 5).a) Draw AABC on graph paper. Is this a right triangle? JUSTIFY
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!