Answer:
n = 3.0 moles
V = 60.0 L
T = 400 K
From PV = nRT, you can find P
P = nRT/V = (3.0 mol)(0.0821 L-atm/K-mol)(400 K)/60.0L
P = 1.642 atm = 1.6 atm (to 2 significant figures)
Explanation:
Assuming that the solution is simply an aqueous solution
so that it is purely made of NaClO4 (the solute) and water (the solvent), then
I believe the dissolved species would only be the ions of NaClO4, these are:
Na+
ClO4 -
Answer:
The correct answer is 574.59 grams.
Explanation:
Based on the given information, the number of moles of NH₃ will be,
= 2.50 L × 0.800 mol/L
= 2 mol
The given pH of a buffer is 8.53
pH + pOH = 14.00
pOH = 14.00 - pH
pOH = 14.00 - 8.53
pOH = 5.47
The Kb of ammonia given is 1.8 * 10^-5. Now pKb = -logKb,
= -log (1.8 ×10⁻⁵)
= 5.00 - log 1.8
= 5.00 - 0.26
= 4.74
Based on Henderson equation:
pOH = pKb + log ([salt]/[base])
pOH = pKb + [NH₄⁺]/[NH₃]
5.47 = 4.74 + log ([NH₄⁺]/[NH₃])
log([NH₄⁺]/[NH₃]) = 5.47-4.74 = 0.73
[NH₄⁺]/[NH₃] = 10^0.73= 5.37
[NH₄⁺ = 5.37 × 2 mol = 10.74 mol
Now the mass of dry ammonium chloride required is,
mass of NH₄Cl = 10.74 mol × 53.5 g/mol
= 574.59 grams.
Answer:
When we stand on the floor, we apply a force on the floor surface in the downward direction and in return the floor also exerts an upward and equal force on us.
Explanation:
Newton' third law is vey famous and it states that for each and every action, there applies an equal but opposite reaction. Thus the action force and the reaction force always acts on pairs. But they does not contribute to the motion of the object.
One such example that illustrates the action and reaction force from Newton's law is when we stand on the floor we exert a force on the floor surface in downward direction. The floor surface also exerts an opposite and equal force on us in the upward direction.