A, e, and f! hope it helps
Answer:
Step-by-step explanation:
9). -2.2(4 - 1.9x) = 3.3(0.2x - 0.8)
-8.8 + 2.2(1.9x) = 0.66x - 2.64
-8.8 + 4.18x = 0.66x - 2.64
4.18x - 0.66x = 8.8 - 2.64
3.52x = 6.16
x = 1.75
10). 3.2(1 + 2.6x) = 2.4(x - 3.6)
3.2 + 8.32x = 2.4x - 8.64
8.32x - 2.4x = -3.2 - 8.64
5.92x = -11.84
x = 2
11). 4.6(2x - 5.5) = 3.9 + 0.8(1 + 5.5x)
9.2x - 25.3 = 3.9 + 0.8 + 4.4x
9.2x - 25.3 = 4.7 + 4.4x
9.2x - 4.4x = 25.3 + 4.7
4.8x = 30
x = 6.25
12). 0.2(3x + 2.5) - 4.9 = 3.8 - 2.2(x - 5.5)
0.6x + 0.5 - 4.9 = 3.8 - 2.2x + 12.10
0.6x - 4.4 = -2.2x + 15.90
0.6x + 2.2x = 15.90 + 4.4
2.8x = 20.30
x = 7.25
Answer:
Future value of annuity (FV) = $13,782.12 (Approx)
Step-by-step explanation:
Given:
Periodic payment p = $500
Interest rate r = 13% = 13%/4 = 0.0325 (Quarterly)
Number of period n = 5 x 4 = 20 quarter
Find:
Future value of annuity (FV)
Computation:
![Future\ value\ of\ annuity\ (FV)=p[\frac{(1+r)^n-1}{r} ] \\\\Future\ value\ of\ annuity\ (FV)=500[\frac{(1+0.0325)^{20}-1}{0.0325} ] \\\\Future\ value\ of\ annuity\ (FV)=13,782.1219 \\\\](https://tex.z-dn.net/?f=Future%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3Dp%5B%5Cfrac%7B%281%2Br%29%5En-1%7D%7Br%7D%20%5D%20%5C%5C%5C%5CFuture%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3D500%5B%5Cfrac%7B%281%2B0.0325%29%5E%7B20%7D-1%7D%7B0.0325%7D%20%5D%20%5C%5C%5C%5CFuture%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3D13%2C782.1219%20%5C%5C%5C%5C)
Future value of annuity (FV) = $13,782.12 (Approx)