Answer:
<h2>
![x = - \frac{19}{4}](https://tex.z-dn.net/?f=x%20%3D%20%20-%20%20%5Cfrac%7B19%7D%7B4%7D%20)
</h2>
Option B is the correct option.
Step-by-step explanation:
![- \frac{1}{2} + x = - \frac{21}{4}](https://tex.z-dn.net/?f=%20-%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2B%20x%20%3D%20%20-%20%20%5Cfrac%7B21%7D%7B4%7D%20)
Move constant to R.H.S and change its sign:
![x = - \frac{21}{4} + \frac{1}{2}](https://tex.z-dn.net/?f=x%20%3D%20%20-%20%20%5Cfrac%7B21%7D%7B4%7D%20%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20)
Take the L.C.M
![x = \frac{ - 21 + 1 \times 2}{4}](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B%20-%2021%20%2B%201%20%20%5Ctimes%202%7D%7B4%7D%20)
![x = \frac{ - 21 + 2}{4}](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B%20-%2021%20%2B%202%7D%7B4%7D%20)
Calculate
![x = - \frac{19}{4}](https://tex.z-dn.net/?f=x%20%3D%20%20-%20%20%5Cfrac%7B19%7D%7B4%7D%20)
Hope this helps...
Good luck on your assignment..
Answer:
![\large\boxed{(x+5)^2+y^2=64}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%28x%2B5%29%5E2%2By%5E2%3D64%7D)
Step-by-step explanation:
The standard form of an equation of a circle:
![(x-h)^2+(y-k)^2=r^2](https://tex.z-dn.net/?f=%28x-h%29%5E2%2B%28y-k%29%5E2%3Dr%5E2)
(h, k) - center
r - radius
We have the center (-5, 0) and the radius r = 8. Substitute:
![(x-(-5))^2+(y-0)^2=8^2\\\\(x+5)^2+y^2=64](https://tex.z-dn.net/?f=%28x-%28-5%29%29%5E2%2B%28y-0%29%5E2%3D8%5E2%5C%5C%5C%5C%28x%2B5%29%5E2%2By%5E2%3D64)
it depends :/ like it depends on the class n shi but never ever skip 2 periods inna row cuz then
u too susss. also yes
writing random exp.
for points so dont come at me