1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
15

The availability of a wide variety of goods and services is a characterisitic of a

Advanced Placement (AP)
1 answer:
blsea [12.9K]3 years ago
5 0

The answer is command economy.

Explanation:

Command economy is the combination of both communistic and capitalistic economy.

A command economy is a system that determines what are the goods to be produced and how much should be produced and price of the goods offered for sale. They also determine investment and income.

They mostly suffer from problems with poor incentives for planners, managers and workers in state- owned enterprises.

Thus the availability of a wide variety of goods and services is a characteristic of a command economy.

You might be interested in
Solve the following differential equation with initial conditions: y''=e^-2t+10e^4t ; y(0)=1, y'(0)=0​
skad [1K]

Answer:

Option A.  y = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

Explanation:

This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go.  At a couple points, we'll need to apply u-substitution.

<u>Round 1:</u>

To solve the differential equation, write it as differentials, move the differential, and integrate both sides:

y''=e^{-2t}+10e^{4t}

\frac{dy'}{dt}=e^{-2t}+10e^{4t}

dy'=[e^{-2t}+10e^{4t}]dt

\int dy'=\int [e^{-2t}+10e^{4t}]dt

Applying various properties of integration:

\int dy'=\int e^{-2t} dt + \int 10e^{4t}dt\\\int dy'=\int e^{-2t} dt + 10\int e^{4t}dt

Prepare for integration by u-substitution

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt, letting u_1=-2t and u_2=4t

Find dt in terms of u_1 \text{ and } u_2

u_1=-2t\\du_1=-2dt\\-\frac{1}{2}du_1=dt     u_2=4t\\du_2=4dt\\\frac{1}{4}du_2=dt

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt\\\int dy'=\int e^{u_1} (-\frac{1}{2} du_1) + 10\int e^{u_2}  (\frac{1}{4} du_2)\\\int dy'=-\frac{1}{2} \int e^{u_1} (du_1) + 10 *\frac{1}{4} \int e^{u_2}  (du_2)

Using the Exponential rule (don't forget your constant of integration):

y'=-\frac{1}{2} e^{u_1} + 10 *\frac{1}{4}e^{u_2} +C_1

Back substituting for u_1 \text{ and } u_2:

y'=-\frac{1}{2} e^{(-2t)} + 10 *\frac{1}{4}e^{(4t)} +C_1\\y'=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\

<u>Finding the constant of integration</u>

Given initial condition  y'(0)=0

y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\0=y'(0)=-\frac{1}{2} e^{-2(0)} + \frac{5}{2}e^{4(0)} +C_1\\0=-\frac{1}{2} (1) + \frac{5}{2}(1) +C_1\\-2=C_1\\

The first derivative with the initial condition applied: y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\

<u>Round 2:</u>

Integrate again:

y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\

y = -\frac{1}{2} * -\frac{1}{2} e^{-2t} + \frac{5}{2} * \frac{1}{4} e^{4t} - 2 t + C_2\\y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + C_2

<u />

<u>Finding the constant of integration :</u>

Given initial condition  y(0)=1

1=y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + C_2\\1 = \frac{1}{4} (1) + \frac{5}{8} (1) - (0) + C_2\\1 = \frac{7}{8} + C_2\\\frac{1}{8}=C_2

So, y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

<u>Checking the solution</u>

y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

This matches our initial conditions here y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + \frac{1}{8} = 1

Going back to the function, differentiate:

y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'

Apply Exponential rule and chain rule, then power rule

y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2

This matches our first order step and the initial conditions there.

y'(0) = -\frac{1}{2} e^{-2(0)} + \frac{5}{2} e^{4(0)} - 2=0

Going back to the function y', differentiate:

y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'

Applying the Exponential rule and chain rule, then power rule

y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}

So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.

7 0
2 years ago
Both South Asia and Western Europe have high population densities. How does the distribution of these two populations differ?
Aleksandr-060686 [28]

South Asia's population mostly lives in the countryside as farmers. Western Europe's population mostly lives in large cities.

Explanation:

Based on the information from the World Bank, about 70% of people living in South Asia have about the third quarter of the population living on agriculture and stays in rural areas. There is about 36% urban ratio in South Asia, with 303 people per square kilometers. On the other hand, the urban ratio in Western Europe is about 79.8%, with a population density of 181 people per square kilometers. Hence, in this case, the right answer is Option E. South Asia's population mostly lives in the countryside as farmers. Western Europe's population mostly lives in large cities.

3 0
3 years ago
Around 20% of all yearly deaths in the United States can be attributed to chronic __________ use.
Zielflug [23.3K]
I think the answer is D. marijuana
5 0
4 years ago
Read 2 more answers
mmmmmmmmmmmmmmmmmmmmmFmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmRmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmEmmmmmmmmmm
Step2247 [10]

Answer:

nicee

Explanation:

they asked for an explanation but i dont have one Lol

8 0
3 years ago
Someone help me plz:( I have to pass this test
Eduardwww [97]
I’m pretty sure the correct answer is C
4 0
3 years ago
Other questions:
  • Its between A and E, need a wise opinion.
    6·1 answer
  • This is a major archaeological site that was once a regional center to the Mayan Empire in Ancient Mesoamerica.
    6·1 answer
  • Compare and contrast these two paragraphs:
    6·1 answer
  • The ____ lets you know the order in which the music will be performed.
    6·2 answers
  • What did everyone in America think they ought to have a chance to be after WWII?
    15·1 answer
  • _____ theory identified seven primary abilitites. They are inductive reasoning, word fluency, perceptual ability, verbal compreh
    14·1 answer
  • 9) John is hanging 146 feet of Halloween lights on the sides of his rectangular fence that
    12·1 answer
  • Medicare benefits are restricted to those who
    7·1 answer
  • A young couple is pregnant with their first child . The mothers family has a history of a rare genetic condition . what specific
    14·1 answer
  • Increasing the income tax rate _____ the before tax real wage rate and ____ the after tax real wage rate.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!