Answer:
b) The width of the confidence interval becomes narrower when the sample mean increases.
Step-by-step explanation:
The confidence interval can be calculated as:

a) The width of the confidence interval becomes wider as the confidence level increases.
The above statement is true as the confidence level increases the width increases as the absolute value of test statistic increases.
b) The width of the confidence interval becomes narrower when the sample mean increases.
The above statement is false. As the sample mean increases the width of the confidence interval increases.
c) The width of the confidence interval becomes narrower when the sample size n increases.
The above statement is true as the sample size increases the standard error decreases and the confidence interval become narrower.
Answer:
-101,430
Step-by-step explanation:
23 x 98 x 45 x 1 equals 101,430, but the real trick of the question is whether it is positive or negative.
23(-98) forms a negative number (-2,254)
-2254(-45) forms a positive number (101,430)
101,430(-1) forms a negative number (-101,430)
Answer:
-0.43
Step-by-step explanation:
Answer:
11
Step-by-step explanation:
Well basically i took 19 1/4 and divided it by 1 3/4 and there for i got 11. YOUR WELCOME.
Answer:
The shadow is decreasing at the rate of 3.55 inch/min
Step-by-step explanation:
The height of the building = 60ft
The shadow of the building on the level ground is 25ft long
Ѳ is increasing at the rate of 0.24°/min
Using SOHCAHTOA,
Tan Ѳ = opposite/ adjacent
= height of the building / length of the shadow
Tan Ѳ = h/x
X= h/tan Ѳ
Recall that tan Ѳ = sin Ѳ/cos Ѳ
X= h/x (sin Ѳ/cos Ѳ)
Differentiate with respect to t
dx/dt = (-h/sin²Ѳ)dѲ/dt
When x= 25ft
tanѲ = h/x
= 60/25
Ѳ= tan^-1(60/25)
= 67.38°
dѲ/dt= 0.24°/min
Convert the height in ft to inches
1 ft = 12 inches
Therefore, 60ft = 60*12
= 720 inches
Convert degree/min to radian/min
1°= 0.0175radian
Therefore, 0.24° = 0.24 * 0.0175
= 0.0042 radian/min
Recall that
dx/dt = (-h/sin²Ѳ)dѲ/dt
= (-720/sin²(67.38))*0.0042
= (-720/0.8521)*0.0042
-3.55 inch/min
Therefore, the rate at which the length of the shadow of the building decreases is 3.55 inches/min