We know that
The formula for combinations is
C=n!/[(n-r)!*r!]
where
n is the total number of objects you choose from
r is the number that you choose to arrange
in this problem
n=15 students
r=4 students
C=15!/[(15-4)!*4!]-----> C=15!/[11!*4!]---> (15*14*13*12*11!)/(11!*4*3*2*1)
C=(15*14*13*12)/(24)----->C=1365
the answer is
1365
Answer:
75
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Geometry</u>
- Sum of Angles in a Quadrilateral: 360
Step-by-step explanation:
<u>Step 1: Set up</u>
75 + 120 + 90 + ∠4 = 360
<u>Step 2: Solve</u>
- Add: 285 + ∠4 = 360
- [Subtraction Property of Equality] Subtract 285 on both sides: ∠4 = 75
Answer:
Step-by-step explanation:
Average rate of change is just using the slope formula: (y2-y1)/(x2-x1).
Answer:
a =
Step-by-step explanation:
Given:
f(x) = log(x)
and,
f(kaa) = kf(a)
now applying the given function, we get
⇒ log(kaa) = k × log(a)
or
⇒ log(ka²) = k × log(a)
Now, we know the property of the log function that
log(AB) = log(A) + log(B)
and,
log(Aᵇ) = b × log(A)
Thus,
⇒ log(k) + log(a²) = k × log(a) (using log(AB) = log(A) + log(B) )
or
⇒ log(k) + 2log(a) = k × log(a) (using log(Aᵇ) = b × log(A) )
or
⇒ k × log(a) - 2log(a) = log(k)
or
⇒ log(a) × (k - 2) = log(k)
or
⇒ log(a) = (k - 2)⁻¹ × log(k)
or
⇒ log(a) =
(using log(Aᵇ) = b × log(A) )
taking anti-log both sides
⇒ a =
1. X(0,0) --> X'(3,-5).
To go from (0,0) to (3,-5), you must go to the right 3 and down 5.
I cannot answer 2 or 3, as rotations are not my strong suit.