If s(x) = x – 7 and t(x) = 4x2 – x + 3, which expression is equivalent to (t*s)(x)
1 answer:
S(x) = x - 7; t(x) = 4x² - x + 3
(t · s)(x) = (4x² - x + 3)(x - 7) = (4x²)(x) + (4x²)(-7) - (x)(x) - (x)(-7) + (3)(x) + (3)(-7)
= 4x³ - 28x² - x² + 7x + 3x - 21 = 4x³ - 29x² + 10x - 21
You might be interested in
Answer:
11y-2x= -90
Step-by-step explanation:
for the point (1,-8)
x=1 and y= -8
for the equation,
2x -4y= -11
x= -1/m
m= -1/x
x = -1/ (-11/2 )
m= 2/11
so for the equation,
y-y1= m(x- x1)
y- -8=2/11(x-1)
11(y+8)= 2(x-1)
11y +88= 2x-2
11y-2x= -90
Answer:
it -1
Step-by-step explanation:
Answer:
b. 0.86, 0.87
Step-by-step explanation:
a. Find attached solution to a
Answer:
The answer is 10.
Step-by-step explanation:
Answer:
try leaving and coming back to it
Step-by-step explanation: