Answer:
the statements are not equivalent
Answer:
So the number of total combinations is 35.
Step-by-step explanation:
We know that Ellen must take 4 courses this semester. She has a list of 3 math courses and 4 science courses.
Therefore, she have total 7 courses.
So, we calculate the number of combinations to choose 4 out of 7 courses.
We get:

So the number of total combinations is 35.
Answer:
Volume of a cup
The shape of the cup is a cylinder. The volume of a cylinder is:
\text{Volume of a cylinder}=\pi \times (radius)^2\times heightVolume of a cylinder=π×(radius)
2
×height
The diameter fo the cup is half the diameter: 2in/2 = 1in.
Substitute radius = 1 in, and height = 4 in in the formula for the volume of a cylinder:
\text{Volume of the cup}=\pi \times (1in)^2\times 4in\approx 12.57in^3Volume of the cup=π×(1in)
2
×4in≈12.57in
3
2. Volume of the sink:
The volume of the sink is 1072in³ (note the units is in³ and not in).
3. Divide the volume of the sink by the volume of the cup.
This gives the number of cups that contain a volume equal to the volume of the sink:
\dfrac{1072in^3}{12.57in^3}=85.3cups\approx 85cups
12.57in
3
Step-by-step explanation:
The right triangle is also Isosceles. It has two equal angles of 45°.
(hypotenuse)² = 2S²
4 = 2S² => S = √2
Therefore B is the correct answer.
The answer is A) x=0.3
Step-by-step explanation:
Move all terms containing xx to the left side of the equation.
14x−15.4=−11.2
Move all terms not containing x to the right side of the equation.
14x=4.214x=4.2
Divide each term by 14 and simplify
x=0.3