Answer and Step-by-step explanation:
This is a complete question
Trials in an experiment with a polygraph include 97 results that include 23 cases of wrong results and 74 cases of correct results. Use a 0.01 significance level to test the claim that such polygraph results are correct less than 80% of the time. Identify the nullhypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method. Use the normal distribution as an approximation of the binomial distribution.
The computation is shown below:
The null and alternative hypothesis is



= 0.7629
Now Test statistic = z
![= \hat p - P0 / [\sqrtP0 \times (1 - P0 ) / n]](https://tex.z-dn.net/?f=%3D%20%5Chat%20p%20-%20P0%20%2F%20%5B%5CsqrtP0%20%5Ctimes%20%281%20-%20P0%20%29%20%2F%20n%5D)
![= 0.7629 - 0.80 / [\sqrt(0.80 \times 0.20) / 97]](https://tex.z-dn.net/?f=%3D%200.7629%20-%200.80%20%2F%20%5B%5Csqrt%280.80%20%5Ctimes%200.20%29%20%2F%2097%5D)
= -0.91
Now
P-value = 0.1804


So, it is Fail to reject the null hypothesis.
There is ample evidence to demonstrate that less than 80 percent of the time reports that these polygraph findings are accurate.
Answer:
60 + 70n ≤ 200
Step-by-step explanation:
Since the $200 is a maximum, only inequalities with "≤ 200" make any sense in this context.
Since the unit rate for training sessins is $70, only expressions containing 70n make any sense in this context.
The only inequaity that makes any sense in this context is ...
60 + 70n ≤ 200
Answer:
first you find out how much will 1/2 kg of carrot cost, that way you can multiply it by 3 to get what 3/2 cost.
So, 3÷ 5 = 0.6 per 1/2 kg. Then 0.6 × 3 = 1.8 dollars for 3/2 kg
We turn -5,12 into polar coordinates. It's a Pythagorean Triple so
r = 13 Ф=arctan(-12/5) + 180° ( in the second quadrant )
so -5 = 13 cos Ф, 12 = 13 sin Ф
12 sin x - 5 cos x = 6.5
13 sinФ sin x + 13 cos Ф cos x = 6.5
13 cos(x - Ф) = 6.5
cos(x - Ф) = 1/2
cos(x - Ф) = cos 60°
x - Ф = ± 60° + 360° k integer k
x = Ф ± 60° + 360° k
x = 180° + arctan(-12/5) ± 60° + 360° k
That's the exact answer;
x ≈ 180° - 67.38° ± 60° + 360° k
x ≈ 122.62° ± 60° + 360° k
x ≈ { 62.62°, 182.62°} + 360° k, integer k