243,880 is the correct answer

or we can round it, to say c = 2.19, so hmm that's the missing side
now, we use Heron's Formula, which uses all 3 sides only

and that'd be the area of it
Linear functions are usually of degree 1. They are a straight line. y=mx+b
Answer:
0.5
Step-by-step explanation:
the first significant figure is the non zero
Answer:
We cannot say that the mean wake time are different before and after the treatment, with 98% certainty. So the zopiclone doesn't appear to be effective.
Step-by-step explanation:
The goal of this analysis is to determine if the mean wake time before the treatment is statistically significant. The question informed us the mean wake time before and after the treatment, the number of subjects and the standard deviation of the sample after treatment. So using the formula, we can calculate the confidence interval as following:
![IC[\mu ; 98\%] = \overline{y} \pm t_{0.99,n-1}\sqrt{\frac{Var(y)}{n}}](https://tex.z-dn.net/?f=IC%5B%5Cmu%20%3B%2098%5C%25%5D%20%3D%20%5Coverline%7By%7D%20%5Cpm%20t_%7B0.99%2Cn-1%7D%5Csqrt%7B%5Cfrac%7BVar%28y%29%7D%7Bn%7D%7D)
Knowing that
:
![IC[\mu ; 98\%] = 98.9 \pm 2.602\frac{42.3}{4} \Rightarrow 98.9 \pm 27.516](https://tex.z-dn.net/?f=IC%5B%5Cmu%20%3B%2098%5C%25%5D%20%3D%2098.9%20%5Cpm%202.602%5Cfrac%7B42.3%7D%7B4%7D%20%5CRightarrow%2098.9%20%5Cpm%2027.516)
![IC[\mu ; 98\%] = [71.387 ; 126,416]](https://tex.z-dn.net/?f=IC%5B%5Cmu%20%3B%2098%5C%25%5D%20%3D%20%5B71.387%20%3B%20126%2C416%5D)
Note that
so we cannot say, with 98% confidence, that the mean wake time before treatment is different than the mean wake time after treatment. So the zopiclone doesn't appear to be effective.