1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
3 years ago
11

What two numbers can be multiplied to be -150 and added to be 5

Mathematics
1 answer:
pav-90 [236]3 years ago
8 0
Xy = -150
x + y = 5

     x + y = 5
x - x + y = -x + 5
           y = -x + 5

                                                       xy = -150
                                             x(-x + 5) = -150
                                         x(-x) + x(5) = -150
                                               -x² + 5x = -150
                                     -x² + 5x + 150 = 0
                       -1(x²) - 1(-5x) - 1(-150) = 0
                                  -1(x² - 5x - 150) = 0
                                               -1            -1
                                        x² - 5x - 150 = 0
                                        x = -(-5) ± √((-5)² - 4(1)(-150))
                                                                2(1)
                                        x = 5 ± √(25 + 600)
                                                         2
                                        x = 5 ± √(625)
                                                     2
                                        x = 5 ± 25
                                                 2
                                        x = 2.5 ± 12.5
                                        x = 2.5 + 12.5    or    x = 2.5 - 12.5
                                        x = 15          or          x = -10

    x + y = 5
  15 + y = 5
- 15      - 15
          y = -10
    (x, y) = (15, -10)

            or

    x + y = 5
 -10 + y = 5
+ 10    + 10
           y = 15
    (x, y) = (-10, 15)

The two numbers that add up to 5 and multiply to -150 are 15 and -10.
You might be interested in
Find the equation of the line whose slope is -3 and which passes through the point (-5, 3)
nadezda [96]

Answer:

y=-3x-12

Step-by-step explanation:

Plug into equation y=mx+b

3=(-3)-5+b

Simplify

3=15+b

Subtract 15 from both sides

-12=b

Add slope and y-intercept into base equation

y=-3x-12

4 0
3 years ago
Find the amount of time. <br> 8. I = $2000, P = $5000, r = 8%
algol [13]

Answer:

t = 5 years

Step-by-step explanation:

I = $ 2000

P = $ 5000

r = 8%

I = P * \frac{r}{100}*t\\\\t =\frac{ I * 100}{P*r}\\\\t =\frac{2000*100}{5000*8}\\\\ = 5

5 0
3 years ago
Describe the motion of a particle with position (x, y) as t varies in the given interval. (For each answer, enter an ordered pai
DerKrebs [107]

Answer:

The motion of the particle describes an ellipse.

Step-by-step explanation:

The characteristics of the motion of the particle is derived by eliminating t in the parametric expressions. Since both expressions are based on trigonometric functions, we proceed to use the following trigonometric identity:

\cos^{2} t + \sin^{2} t = 1 (1)

Where:

\cos t = \frac{y-3}{2} (2)

\sin t = x - 1 (3)

By (2) and (3) in (1):

\left(\frac{y-3}{2} \right)^{2} + (x-1)^{2} = 1

\frac{(x-1)^{2}}{1}+\frac{(y-3)^{2}}{4} = 1 (4)

The motion of the particle describes an ellipse.

7 0
2 years ago
What is the value of the expression
Stels [109]

(-\dfrac{3^2}{3^3} )^2 = (-\dfrac{1}{3} )^2 = \dfrac{1}{9}


OR (in more details):


(-\dfrac{3^2}{3^3} )^2 = (-3^{2-3})^2 = (-3^{-1})^2 = (-\dfrac{1}{3} )^2 = \dfrac{1}{9}


5 0
3 years ago
Read 2 more answers
The curves y = √x and y=(2-x) and the Cartesian axes form two distinct regions in the first quadrant. Find the volumes of rotati
makkiz [27]

Answer:

Step-by-step explanation:

If you graph there would be two different regions. The first one would be

y = \sqrt{x} \,\,\,\,, 0\leq x \leq 1 \\

And the second one would be

y = 2-x \,\,\,\,\,,  1 \leq x \leq 2.

If you rotate the first region around the "y" axis you get that

{\displaystyle A_1 = 2\pi \int\limits_{0}^{1} x\sqrt{x} dx = \frac{4\pi}{5} = 2.51 }

And if you rotate the second region around the "y" axis you get that

{\displaystyle A_2 = 2\pi \int\limits_{1}^{2} x(2-x) dx = \frac{4\pi}{3} = 4.188 }

And the sum would be  2.51+4.188 = 6.698

If you revolve just the outer curve you get

If you rotate the first  region around the x axis you get that

{\displaystyle A_1 =\pi \int\limits_{0}^{1} ( \sqrt{x})^2 dx = \frac{\pi}{2} = 1.5708 }

And if you rotate the second region around the x axis you get that

{\displaystyle A_2 = \pi \int\limits_{1}^{2} (2-x)^2 dx = \frac{\pi}{3} = 1.0472 }

And the sum would be 1.5708+1.0472 = 2.618

7 0
3 years ago
Other questions:
  • What is the percentage increase of 108.17 to 130.47
    15·2 answers
  • If the interior angle of a polygon is 170 how many sides does it have
    14·1 answer
  • What is the answer ??​
    14·2 answers
  • Please show me how you do this question
    13·2 answers
  • Please please please help! I can Venmo you too if needed
    11·2 answers
  • I need help pls help
    15·1 answer
  • Plz show how u got the answer
    8·1 answer
  • Find 66.9% of 160.6. Round to the nearest thousandth.
    12·2 answers
  • If two sides of a triangle measure 18 centimeters and 22 centimeters what could be the measure of the third side
    5·1 answer
  • A sum of money amounts to Rs 1380 in3 years and to Rs 1500 in 5 years.Find the rate of interest.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!